
®

User ManualEm
b
ed

d
ed

 S
ol

ut
io

ns

MDIS4 under Windows
MEN Driver Interface System

21M000-13 E2 - 2004-10-20

About this Document

MEN Mikro Elektronik GmbH 2
21M000-13 E2 - 2004-10-20

About this Document

This manual is a complete documentation of MDIS4/2004 under Windows.

History

Conventions

This sign marks important notes or warnings concerning proper functionality of the
product described in this document. You should read them in any case.

Folder, file and function names are printed in italics.

Bold type is used for emphasis.

A monospaced font type is used for listings, C function descriptions or wherever
appropriate.

Hyperlinks are printed in blue color.

The globe will show you where hyperlinks lead directly to the Internet, so you can
look for the latest information online.

Signal names followed by "#" or preceded by a slash ("/") indicate that this signal is
either active low or that it becomes active at a falling edge.

Vertical lines on the outer margin signal technical changes to the previous edition of
the document.

Edition Comments Technical Content Date of Issue

E1 First edition D. Pfeuffer 2004-06-22

E2 Minor errors corrected D. Pfeuffer 2004-10-20

!
italics

bold

monospace

hyperlink

IRQ#
/IRQ

About this Document

MEN Mikro Elektronik GmbH 3
21M000-13 E2 - 2004-10-20

Copyright Information

MEN Mikro Elektronik reserves the right to make changes without further notice to any products
herein. MEN makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does MEN assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages.
"Typical" parameters can and do vary in different applications. All operating parameters, including
"Typicals" must be validated for each customer application by customer's technical experts.
MEN does not convey any license under its patent rights nor the rights of others.
Unless agreed otherwise, MEN products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the MEN product could
create a situation where personal injury or death may occur. Should Buyer purchase or use MEN
products for any such unintended or unauthorized application, Buyer shall indemnify and hold MEN
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that MEN was negligent regarding the design or manufacture of the part.

Unless agreed otherwise, the products of MEN Mikro Elektronik are not suited for use in nuclear
reactors and for application in medical appliances used for therapeutical purposes. Application of
MEN's products in such plants is only possible after the user has precisely specified the operation
environment and after MEN Mikro Elektronik has consequently adapted and released the product.

All brand or product names are trademarks or registered trademarks of their respective holders.

Information in this document has been carefully checked and is believed to be accurate as of the date of
publication; however, no responsibility is assumed for inaccuracies. MEN Mikro Elektronik accepts no
liability for consequential or incidental damages arising from the use of its products and reserves the
right to make changes on the products herein without notice to improve reliability, function or design.
MEN Mikro Elektronik does not assume any liability arising out of the application or use of the
products described in this document.

Copyright © 2004 MEN Mikro Elektronik GmbH. All rights reserved.

Please recycle

Germany
MEN Mikro Elektronik GmbH
Neuwieder Straße 5-7
90411 Nuremberg
Phone +49-911-99 33 5-0
Fax +49-911-99 33 5-901
E-mail info@men.de
www.men.de

France
MEN Mikro Elektronik SA
18, rue René Cassin
ZA de la Châtelaine
74240 Gaillard
Phone +33 (0) 450-955-312
Fax +33 (0) 450-955-211
E-mail info@men-france.fr
www.men-france.fr

UK
MEN Micro Ltd
Whitehall, 75 School Lane
Hartford, Northwich
Cheshire UK, CW8 1PF
Phone +44 (0) 1477-549-185
Fax +44 (0) 1477-549-178
E-mail info@menmicro.co.uk
www.menmicro.co.uk

USA
MEN Micro, Inc.
PO Box 4160
Lago Vista, TX 78645-4160
Phone (512) 267-8883
Fax (512) 267-8803
E-mail sales@menmicro.com
www.menmicro.com

mailto: info@men.de
http://www.men.de
mailto: info@men-france.fr
http://www.men-france.fr
mailto: info@menmicro.co.uk
http://www.menmicro.co.uk
mailto: sales@menmicro.com
http://www.menmicro.com

Contents

MEN Mikro Elektronik GmbH 4
21M000-13 E2 - 2004-10-20

Contents

A 1 General . 8
A 1.1 Name Conventions . 8
A 1.2 Supported Windows Versions. 8
A 1.3 Introduction to MDIS . 9
A 1.4 Available Packages . 9
A 1.5 How MDIS4 Maps into the Windows NT Architecture 10

A 2 Contents of the Package . 12

A 3 Installing MDIS4 on the Host System . 15
A 3.1 Installing the System Package . 15
A 3.2 Installing a Driver Package . 16

A 3.2.1 Hints on Updating and Deinstalling 17

A 4 Installing the Target System . 18
A 4.1 VMEbus Systems and Swapping Drivers. 19
A 4.2 Choosing the Right Windows Driver Type. 20
A 4.3 Installing Windows NT 4.0 Drivers . 22
A 4.4 Installing Windows 2000 PnP Drivers . 24

A 4.4.1 W2k Driver & PnP Basics. 25
A 4.4.2 Providing the Installation Files . 26
A 4.4.3 Installing PnP Devices . 27
A 4.4.4 Installing Non-PnP Devices . 29
A 4.4.5 Reinstalling and Updating W2k PnP Drivers 31
A 4.4.6 Notes for Hardware Device Configuration Changes. 32

A 5 NT4 Drivers and Device Configuration . 34
A 5.1 Starting and Stopping NT4 Drivers . 36

A 5.1.1 Starting Drivers Manually. 36
A 5.1.2 Stopping Drivers Manually . 36

A 5.2 Driver Dependencies . 38
A 5.3 NT4 Driver Standard Parameters . 39
A 5.4 NT4 Driver Descriptor Files. 41

A 5.4.1 Generating .reg Descriptors for NT4 Drivers 42
A 5.4.2 NT4 Driver-Specific MDIS Keys . 46

A 6 W2k Drivers & Device Configuration . 52
A 6.1 W2k Device Parameters . 53
A 6.2 MDIS4 Device Parameters . 58

A 7 Building MDIS4 Applications from C Sources . 60
A 7.1 Using NMAKE. 61
A 7.2 Using VC++ IDE . 62

A 7.2.1 Building an Application . 62
A 7.2.2 Cloning a Project File . 63

Contents

MEN Mikro Elektronik GmbH 5
21M000-13 E2 - 2004-10-20

A 8 Writing Applications for MDIS . 64
A 8.1 Basics of MDIS API Libraries . 65
A 8.2 C/C++ Specifics . 66

A 8.2.1 Using Static MDIS API Libraries . 66
A 8.2.2 Using MDIS API DLLs . 67
A 8.2.3 Visual C++ Notes . 67

A 8.3 Visual Basic Specifics . 68
A 8.3.1 VB Declaration Files. 68
A 8.3.2 Multithreading. 68
A 8.3.3 MAPIVB – VB Example MDIS4 Application 69

A 8.4 Delphi Specifics . 69
A 8.4.1 Delphi Import Units . 69

A 8.5 Measurement Studio. 70
A 8.5.1 General . 70
A 8.5.2 Customizing Your Project . 70
A 8.5.3 Writing Code with MDIS4 . 72

A 8.6 MDISNT Test and Configuration Utility 74
A 8.6.1 Using MDISNT. 74

A 9 Solving Problems . 76
A 9.1 Gathering Information . 76

A 9.1.1 Viewing Event-Log Entries . 76
A 9.1.2 Displaying the Used Driver Parameters (NT4) 76
A 9.1.3 Displaying the Used Resources. 77
A 9.1.4 Getting Revision Information on MDIS Modules 77
A 9.1.5 Getting .sys/.dll File Information . 78
A 9.1.6 Examining Dependencies of Executables 78
A 9.1.7 Viewing the PCI Configuration Space 78
A 9.1.8 Displaying Debug Output from Checked Modules. 78

A 9.2 Problems and Solutions . 79
A 9.2.1 NT4 Driver Does Not Start . 79
A 9.2.2 NT4 Driver Does Not Stop . 79
A 9.2.3 Device Driver Does Not Work . 80
A 9.2.4 Strings of Event-log Entries are Missing 80
A 9.2.5 W2k Device Cannot be Opened . 80
A 9.2.6 Cannot Link C/C++ Application with Static MDIS API

Libraries . 80

A 10 Performance . 81
A 10.1 MDIS-API Calls without Hardware Access. 81

A 10.1.1 NT4 Drivers on 200MHz D1 CPU . 81
A 10.1.2 NT4/W2k Drivers on 1.2GHz F7N CPU 82

A 10.2 MDIS-API Calls with Hardware Access 84
A 10.2.1 NT4 Drivers on 200MHz D1 CPU . 84
A 10.2.2 NT4/W2k Drivers on 1.2GHz F7N CPU 85

Contents

MEN Mikro Elektronik GmbH 6
21M000-13 E2 - 2004-10-20

A 11 Development Tools and Resources . 86
A 11.1 Development Tools. 86
A 11.2 Literature . 87
A 11.3 Resources on the Web . 87

B 1 MBUF Device I/O. 88
B 1.1 Channels . 88
B 1.2 Channel I/O . 88

B 1.2.1 Channel I/O Modes . 88
B 1.2.2 Channel Direction . 88

B 1.3 Block I/O . 89
B 1.3.1 Driver Buffers . 89
B 1.3.2 Block I/O Modes . 90

B 1.4 Buffer Events . 95

B 2 Status Codes . 97
B 2.1 Status Code Types . 97
B 2.2 Common Status Codes . 98

B 2.2.1 MDIS Kernel Status Codes . 98
B 2.2.2 Input Buffer Management Status Codes 101
B 2.2.3 Output Buffer Management Status Codes. 102
B 2.2.4 Device Driver Status Codes . 104
B 2.2.5 Board Handler Status Codes . 105

B 3 Error Codes . 106
B 3.1 Operating System Specific Errors . 106
B 3.2 MDIS Kernel Errors . 106
B 3.3 Device Driver Errors . 107
B 3.4 Board Handler Errors . 107
B 3.5 Descriptor Errors . 108
B 3.6 ID PROM Errors. 108
B 3.7 Operating System Service Errors . 108

B 3.7.1 PCI System Specific Error Codes . 109
B 3.7.2 VMEbus Specific Error Codes . 110

B 3.8 Buffer Management Errors. 110
B 3.9 PLD Loader Errors . 110
B 3.10 CPU Handler (Bus Mapper) Errors . 111
B 3.11 BBIS Kernel Errors . 111

B 4 MDIS Device Descriptors . 112
B 4.1 General . 112

B 4.1.1 Devices and Device Descriptors . 112
B 4.1.2 Boards and Board Descriptors . 113

B 4.2 Descriptor Format. 114
B 4.3 Device Descriptor Keys . 115

B 4.3.1 Additional Descriptor Keys for PCI Devices (PC•MIP
Modules) . 116

Contents

MEN Mikro Elektronik GmbH 7
21M000-13 E2 - 2004-10-20

B 4.4 Board Descriptor Keys . 118
B 4.4.1 VMEbus M-Module Carrier Boards 119
B 4.4.2 CompactPCI M-Module Carrier Boards 120
B 4.4.3 Standard PCI M-Module Carrier Boards 121
B 4.4.4 PC•MIP Carrier Boards. 122

B 4.5 Driver Debugging . 124
B 4.5.1 Debug Level . 124
B 4.5.2 Debug Settings . 125

General

MEN Mikro Elektronik GmbH 8
21M000-13 E2 - 2004-10-20

Part A MDIS4 under Windows

A 1 General

In this manual, Windows NT refers to all Windows NT based operating systems
(Windows NT 4.0, Windows 2000, Windows XP) whereas Windows NT 4.0 refers
indeed only to the Windows NT 4.0 operating system.

Since the MDIS4 User Guide might not be updated for each new release of the
MDIS4 System Package for Windows NT/2000/XP/Embedded, please read the
uncompressed readme.txt file for the latest news of the current release. The file is
located in the main ZIP file of the package.

A 1.1 Name Conventions

Windows NT (or just NT)
MS Windows NT based operating system (NT 4.0, Windows 2000, Windows XP)

Windows NT 4.0 (or just NT4)
MS Windows NT 4.0 operating system only

Windows 2000 (or just W2k)
MS Windows 2000

Windows XP (or just XP)
MS Windows XP

Windows XP Embedded (or just XPe)
MS Windows XP Embedded

A 1.2 Supported Windows Versions

MDIS for Windows provides two different Windows driver types to support the
following NT based Microsoft operating systems:

Windows NT 4.0 drivers for:

• Windows NT Workstation 4.0
• Windows NT Embedded 4.01

Windows 2000 PnP drivers for:

• Windows 2000 Professional
• Windows XP Professional
• Windows XP Home Edition
• Windows XP Embedded1

1 Currently, MEN driver packages contain no ready built component definition files (.kdf/
.sld files) for Windows NT/XP Embedded. However, the component definition files can be
created using the MS Component Designer.
For Windows XP Embedded you can convert the .inf files from the Windows 2000 Plug &
Play drivers into component definition (.sld) files by either importing .inf files into MS
Component Designer, or using MS EConvert (for details, refer to the MS MSDN Library).

General

MEN Mikro Elektronik GmbH 9
21M000-13 E2 - 2004-10-20

However, with some limitations, it is also possible to use the Windows NT 4.0
drivers for Windows 2k/XP. Refer to Chapter A 4.2 Choosing the Right Windows
Driver Type on page 20.

A 1.3 Introduction to MDIS

MDIS, the MEN Driver Interface System, is a framework to develop device drivers
for almost any kind of I/O hardware. A properly written driver runs on all operating
systems supported by MDIS. Operating systems currently supported include
Windows, VxWorks, OS-9, Linux and QNX.

MDIS4 is the fourth major revision of MDIS and is the first revision that offers full
platform independence. Earlier revisions were limited to run under MS-DOS and
OS-9 and were fixed to support M-Module mezzanines.

Typical I/O hardware supported by MDIS device drivers:

• Binary I/O

• Analog I/O

• Motion controllers

• Fieldbus controllers (CAN, Profibus etc.)

• Other specialized hardware like watchdogs, hardware monitors, etc.

And this hardware is typically located on:

• M-Module mezzanines

• PC•MIP mezzanines

• PMC Modules

• Other PCI hardware

• Chips on CPU boards and FPGA units

MDIS drivers can be used for all the types of hardware listed above, because in
these cases the driver function can be presented to the application using the MDIS
standard API. There are some device types, like network and disk I/O, where the
MDIS API cannot be used because the operating system already supports this kind
of device. For these devices, you still need to develop a specific driver for each
operating system.

A 1.4 Available Packages

Apart from the MDIS4 System Package for Windows NT/2000/XP/Embedded,
MEN supplies the following driver packages for Windows:

• MDIS4 driver packages for Windows that contain the sources of MDIS4 low-
level drivers and example programs as well as the corresponding ready-to-use,
built object code for Windows.

• Native driver packages for Windows which contain ready-to-use, built object
code of native drivers for Windows.

Note: The OS-independent MDIS4 low-level driver packages that contain only the
sources are no longer required.

General

MEN Mikro Elektronik GmbH 10
21M000-13 E2 - 2004-10-20

A 1.5 How MDIS4 Maps into the Windows NT Architecture

Under Windows NT, user application code runs in user mode (ring 3 of an i386-
based CPU), whereas operating system code (such as system services and device
drivers) runs in kernel mode (ring 0 of an i386-based CPU).

Since there is no direct access from applications to physical memory and I/O ports,
all MDIS drivers run in kernel mode. The Windows NT I/O Manager converts all
input/output requests from user-mode threads into properly sequenced calls to the
MDIS device drivers.

Figure A1. MDIS4 Module Overview for Windows NT

I/O Manager

Board
Hardware

Board Driver
(men_xxx.sys)

Device
Hardware

Application (*.exe)

usr_oss.lib, *.lib

mdis_api.lib

User Mode

Kernel Mode

Registry

men_evlg.dll

Event
Viewer

men_usr_oss.dll, *.dll

men_mdis_api.dll

Application
(*.exe)

Application
(*.exe)

Device Driver
(men_xxx.sys)

Event
Log

DevConfig

BrdConfig

N
T

 O
p

er
at

in
g

 S
ys

te
m

General

MEN Mikro Elektronik GmbH 11
21M000-13 E2 - 2004-10-20

MDIS for Windows uses two different types of drivers:

• Board drivers

• Device drivers

A board driver deals with the hardware of a board (e. g. CPU board or mezzanine
carrier board), whereas a device driver deals with the hardware of a device (e. g.
M-Module, PC•MIP, onboard device) which is plugged or located on a board.

What’s Specific to Board Drivers

• There is a special board driver (e. g. men_d201.sys) for each board type (e. g.
D201 M-Module carrier board).

• A board driver normally comprises an operating system-independent BBIS han-
dler and some libraries.

• A board driver doesn't provide an interface to applications. Only device drivers
communicate with a board driver.

• The board drivers must be started in the system before the device drivers and
must be stopped after the device drivers.

What’s Specific to Device Drivers

• There is a special device driver (e. g. men_m50.sys) for each device type (e. g.
M50 M-Module).

• A device driver normally comprises an operating system-independent MDIS
low-level driver and some libraries. A device driver can also be a native Win-
dows driver for hardware similar to standard PC components (e. g. serial ports).

• An application can access a device driver via the MDIS-API functions (M_open,
M_read, etc.). A native Windows driver (e. g. for serial ports) can be accessed
through functions of the Win32 API (CreateFile, ReadFile, etc.).

The Application Interface

The MDIS-API library and other MDIS API libraries (USR-OSS, etc.) can be
statically linked to an application. Application programs can also use the DLL
versions of the MDIS API libraries (prefixed with men_) at runtime, which allows
the development of non-C applications (e. g. Visual Basic or Delphi programs).

Note: The static and the DLL version of the MDIS-API library version 3.0 and later
require the men_winspec.dll for the Windows 2000 Plug & Play driver sup-
port (refer to Chapter A 8 Writing Applications for MDIS on page 64). For
simplicity, the men_winspec.dll is not shown in Figure A1, MDIS4 Module
Overview for Windows NT, on page 10.

Contents of the Package

MEN Mikro Elektronik GmbH 12
21M000-13 E2 - 2004-10-20

A 2 Contents of the Package

The MDIS4 System Package for Windows NT/2000/XP/Embedded distribution
contains:

• An installation program for the MDIS4 System Package.

• Uncompressed files.

• Compressed files (included in cabinet files .cab).

Uncompressed Files

• readme.txt A text file with the latest news of the current distribution

• history.txt A text file with the revision history of the MDIS4 System Package

• tree.txt A text file with the file tree of the compressed files (excluding the
MDIS4 User Guide)

The uncompressed files are located in the main ZIP file of the package.

Compressed Files

• The MDIS4 User Guide (this file).

• All MDIS API libraries (static libraries as well as DLLs) required to build appli-
cation programs for MDIS.

• All currently available board drivers for Windows.

• DESCGEN — The MDIS descriptor generator, which converts common descrip-
tor files (.dsc) in .reg files for the Windows NT registry.

• MDISNT — A test and configuration utility for MDIS (including sources).

• MAPIVB — A Visual Basic test and example program for MDIS, which demon-
strates the usage of MDIS API DLLs and MDIS drivers with Visual Basic
(including sources).

• The MDIS4 Package Installer — A program that simplifies the installation pro-
cedure of driver packages for Windows.

The compressed files are included in the cabinet files (.cab) of the package.

Contents of the Package

MEN Mikro Elektronik GmbH 13
21M000-13 E2 - 2004-10-20

Example Folder Tree of the MDIS4 System Package for Windows NT/
W2000/XP/Embedded

|-NT === Windows NT4/W2k/XP stuff ===

| |

| |-DRIVERS --- Driver folder ---

| | |-BBIS BBIS board drivers

| | | `-D201 D201 BBIS

| | | |-DOC Documentation

| | | `-DRIVER Driver sources

| | |

| | `-MDIS_LL MDIS device drivers

| | `-MT MT test driver

| | |-DOC Documentation

| | |-DRIVER Driver sources

| | `-TOOLS Tools

| | `-MT_BENCH MT_BENCH tool sources

: :

: :

| |-INCLUDE --- Include folder ---

| | |-COM

| | | `-MEN Common headers

| | `-NATIVE

| | `-MEN Native headers

: :

: :

| |-LIBSRC --- Library folder ---

| | `-MDIS_API MDIS-API library

| | `-DOC Documentation

: :

: :

| |-MAKETMPL --- Makefile templates ---

| | `...

: :

: :

| |-OBJ --- Object folder ---

| | |-DLL DLLs and corresponding import LIBs

| | | `-MEN

| | | `-I386

| | | |-CHECKED Checked builds (debug)

| | | `-FREE Free builds (non-debug)

| | |

| | |-EXE Executables

| | | `...

| | |-LIB Static libraries

| | | `...

| | `-SYS NT4 drivers

| | `...

: :

: :

Contents of the Package

MEN Mikro Elektronik GmbH 14
21M000-13 E2 - 2004-10-20

Note: Basically, all common sources are located in a subfolder named COM. How-
ever, the MDIS4 Package Installer places some Windows-specific files under
the COM subfolders.

| |-TOOLS --- Tools folder ---

| | |-MDISAPP MDISAPP example program

| | | |-DOC Documentation

| | | |-NMAKE NMAKE specific files

| | | `-VC VC specific files

| | |

| | `-MDISNT MDISNT test program

: :

: :

| `-VB --- Visual Basic folder ---

| `-MAPIVB MAPIVB example program

|

`-W2K === Windows W2k/XP stuff ===

 |

 |-OBJ --- Object folder ---

 | |-DLL DLLs and corresponding import LIBs

 | | `-MEN

 | | |-CHK

 | | | `-I386 Checked builds (debug)

 | | `-FRE

 | | `-I386 Free builds (non-debug)

 | |

 | `-SYS W2k drivers

 | `...

 |

 `-TARGET_INSTALL --- Target install folder ---

Installing MDIS4 on the Host System

MEN Mikro Elektronik GmbH 15
21M000-13 E2 - 2004-10-20

A 3 Installing MDIS4 on the Host System

The host system is the Windows NT/2000/XP based PC on which you want to
develop your application. If you would like to develop your application directly on
your target system (without a separate host), you can perform the host and target
installation on your target system. However, this user manual proceeds with the
assumption that you are using two separate physical systems as host and target.

The MDIS4 host installation comprises the installation of the MDIS4 System
Package for Windows NT/2000/XP/Embedded as well as the installation of all the
driver packages required for your application.

Note: The MDIS4 host installation does not install drivers that can be used on the
host. It merely provides access to the drivers, libraries, executables and docu-
mentation in a folder tree.

A 3.1 Installing the System Package

The system package is contained in a single ZIP file (usually 13m00006.zip).

To install the system package, proceed as follows:

� Check the readme.txt file of the system package for additional installation hints.

� Extract the ZIP file to an arbitrary empty folder (e. g. C:\TEMP). Then execute
setup.exe in this temporary folder.

� After the welcome dialog you are prompted for the destination folder (usually
C:\WORK).
Note: From now on, %WORK% in this manual refers to your destination folder.

� Use the default selection of the components to be installed.

The installer performs the following steps:

• The setup program copies all selected components into the destination folder.

• Some environment variables (prefixed by MEN_) are set.

• A program folder is created in the Start menu (default: Programs\MDIS4 for
Windows). From this program folder, called "MDIS4 program folder", you can
browse all documentation files included in the system package. You can also
execute the MDIS4 Package Installer program from here.

Installing MDIS4 on the Host System

MEN Mikro Elektronik GmbH 16
21M000-13 E2 - 2004-10-20

A 3.2 Installing a Driver Package

Use the MDIS4 Package Installer located in %WORK%\NT\MDIS_INSTALLER\ to
install an MDIS4 driver package for Windows or a native driver package for
Windows.

Usually, a driver package consists of a single ZIP file (e. g. 13m06670.zip) and a
PDF user manual (e. g. 21m066-01.pdf). If you want to install several driver
packages, you have to install the packages one by one.

Note: If you have received the package via e-mail, make sure that the ZIP file does
not contain further ZIP files, otherwise you may have received more than one
article bound together in a single ZIP file. In this case, you have to unzip the
single ZIP file manually and must install each article ZIP file with the related
documentation files (if any) separately.

To install an MDIS4 package, proceed as follows:

� Move the driver package ZIP file and any related documentation files (.pdf,
.html, .txt) to an arbitrary empty folder (e.g. C:\MEN_MDIS_PKGS\13M066-
70). Take care to put files of only one article into the empty folder.

� Execute the MDIS4 Package Installer program from the MDIS4 program folder
via the Start menu.

� Specify the path where the driver package is located and follow the setup
instructions.

The MDIS4 Package Installer performs the following steps:

• Copy the content of the Driver Package to the %WORK%\ folder.
Thereby, all Windows 2000/XP package description files (.xml, .inf) and Win-
dows 2000 Plug & Play Drivers (.sys, free build) will be copied to folder
%WORK%\W2K\TARGET_INSTALL.

• Search all folders of the installed package for program*.mak files. If a pro-
gram*.mak file was found in a subfolder, the NMAKE\makefile—if it does not
already exist—will be copied into this subfolder.

• Put links to the documentation files included in the package to the MDIS4 pro-
gram folder.

!

Installing MDIS4 on the Host System

MEN Mikro Elektronik GmbH 17
21M000-13 E2 - 2004-10-20

A 3.2.1 Hints on Updating and Deinstalling

You can update an already installed MDIS4 System Package or driver package by
installing a newer version over your current installation. The setup program copies
the files from the package into the %WORK% folder and overwrites only the same
files. No other files in the %WORK% tree will be overwritten or removed.

For a clean %WORK% folder structure it is sometimes recommended to remove the
current MDIS4 installation before installing a newer MDIS4 System Package
version. You can also specify a different %WORK% location for a new MDIS4
System Package installation, but consider that the MDIS4 Package Installer always
uses the %WORK% location of the last system package installation as destination
path for the driver packages.

You can deinstall the MDIS4 System Package via the Windows Control Panel �
Add/Remove Programs dialog. This deinstallation procedure removes only the
MDIS4 System Package and not the driver packages installed through the MDIS4
Package Installer. Therefore, if you have installed driver packages and you want to
remove the entire MDIS4 installation from your computer you must perform the
following steps:

� Back up your development work from the %WORK% tree.

� Deinstall the MDIS4 System Package using the Add/Remove Programs dialog.

� Remove the %WORK% folder from your disk.

� Remove the MDIS4 program folder from the Start menu.

Note: Only the MDIS4 System Package setup program makes some entries in the
registry which will be removed by the Add/Remove Programs deinstallation.
The MDIS4 Package Installer does not store any additional information in the
registry.

Installing the Target System

MEN Mikro Elektronik GmbH 18
21M000-13 E2 - 2004-10-20

A 4 Installing the Target System

The installation of the target system on which you want to run your applications
depends primarily on

• the target’s Windows version

• the target’s hardware configuration

• the applications that you want to use on the target.

The installation for a target test system comprises:

• The installation of all necessary drivers on the target system. This includes all
device drivers for the devices you want to use as well as the board drivers for the
boards where the devices reside. The following sub chapters describe driver
installation in detail.

• The installation of men_winspec.dll (required) and some MDIS API DLLs
(optional) if the MDIS4 programs are not statically linked with the installed
MDIS API libraries. Refer to Chapter A 8 Writing Applications for MDIS on
page 64.

• The installation of the desired MDIS4 tools, test and example programs. To do
this, just copy the provided executables from the host to an arbitrary folder on the
target.

For the target installation, you have to take all the required files (drivers, programs,
DLLs, etc.) from your MDIS4 host installation. Therefore we recommend to
establish a network connection between the host and the target during the
development phase rather than using any exchangeable media. For your application
distribution, the installation procedure of your entire application including all the
necessary drivers, DLLs, etc., is up to you.

Note: To avoid confusion between a physical hardware device and a virtual soft-
ware device we will use the terms hw-device and sw-device where necessary.

Note: MDIS4 for Windows does not require any special Windows NT Service Pack.
However, we recommend to install the latest Windows Service Pack available
from Microsoft on the target system.

Installing the Target System

MEN Mikro Elektronik GmbH 19
21M000-13 E2 - 2004-10-20

A 4.1 VMEbus Systems and Swapping Drivers

MDIS for Windows supports VMEbus access only for MEN VMEbus systems
(e.g. MEN A13) under W2k/XP but not under NT4.

Targets running Windows NT are always x86 based CPUs (Little Endian oriented)
and have mostly a (Compact)PCI bus where the MDIS supported devices (e.g.
M-Module carrier boards) reside.

However, a target system may provide a VMEbus that is connected to the x86 CPU
via a PCI-to-VMEbus bridge. This bus bridge may or may not swap the data
between the two buses because of the "Big/Little Endian Hell".

Swapping means that each 16-bit or 32-bit access is byte-swapped and that the
offsets to registers are not as expected on this kind of CPU. Swapping can be made
by hardware (e.g. a PCI-to-VME bus bridge) or software (e.g. the swapped variants
of an MDIS driver).

The MDIS4 System Package includes the standard board drivers (e.g.
men_a201.sys) plus swapped variants (e.g. men_a201_sw.sys) for all supported
VMEbus boards. The Windows MDIS driver packages include the standard device
driver (e.g. men_m66.sys) and usually also a swapped variant (e.g.
men_m66_sw.sys).

If swapped variants of the MDIS drivers are required or not, depends on the used
VMEbus system (PCI-to-VMEbus bridge) and the corresponding drivers. Please
refer to the documentation of your VMEbus system.

No swapped MDIS driver variants are required for the currently available
MEN VMEbus systems (e.g. MEN A13).

In general, if you are using the swapped variant of a carrier board driver (e.g.
men_a201_sw.sys) then you also have to use the swapped variants of the device
drivers (e.g. men_m66_sw.sys) for the devices (e.g. M66 M-Module) plugged on the
carrier (e.g. A201 VMEbus carrier).

If the swapping variant of a Windows 2000 PnP board driver was installed, the
Found New Hardware Wizard will search for swapping variants of the subsequent
required device drivers rather than for non-swapping variants.

A special VME4WIN driver from MEN must be installed for the used VMEbus
system prior to the installation of any drivers for devices residing on the
VMEbus. Please contact MEN to obtain the suitable VME4WIN Software
Package for your MEN VMEbus system.

Refer to the documentation of the used VME4WIN driver and VMEbus carrier
board driver for further information about the driver requirements and installation
procedure.

!

!

mailto:info@men.de

Installing the Target System

MEN Mikro Elektronik GmbH 20
21M000-13 E2 - 2004-10-20

A 4.2 Choosing the Right Windows Driver Type

MEN provides two different driver types: Windows NT 4.0 and Windows 2000 Plug
& Play (PnP) drivers.

What the two Driver Types have in Common

• The drivers are designed as kernel-mode drivers that can directly control and
access hardware devices.

• The execution of a driver can be preempted by higher-priority threads or inter-
rupted by interrupts.

• The configuration data for the drivers are stored in the Windows registry.

• The drivers use Windows's event-log service to enter detailed error messages and
other information into the Windows event log. The messages can be viewed
using the Windows Event Viewer.

• Besides the normally used free build version of a driver, there is a checked build
version which can produce debug print output for error debugging. The debug
strings can be viewed using one of the free debug monitor programs. Refer to
Chapter A 9.1.8 Displaying Debug Output from Checked Modules on page 78.

The drivers are not designed for multiprocessor systems, therefore your target
system must be a uniprocessor system.

You must be logged on as an administrator or as a member of the Administrators
group in order to install a driver.

Windows NT 4.0 Drivers or Windows 2000 PnP Drivers?

Bevor the target installation, you have to decide which driver type applies to your
target system. The general rule is:

• If the target runs Windows NT 4.0 you must use the provided Windows NT 4.0
drivers.

• If the target runs Windows 2000 or Windows XP you should use the provided
Windows 2000 PnP drivers.

However, in some cases and under certain circumstances it may be better to use the
provided Windows NT 4.0 drivers for a target running Windows 2000 or Windows
XP. To make a decision, you have to consider the following facts:

• The provided Windows NT 4.0 drivers runs only under Windows 2000/XP if
Windows is installed without ACPI Support. To verify this, open Computer Man-
agement then select Device Manager and expand the Computer tree. If ACPI
support is installed you will see an appropriate description. If Windows 2000/XP
is installed without ACPI you will see the name Standard PC.

• For the Windows NT 4.0 driver installation, you have to create configuration
files (.reg) which depend on the target’s hardware configuration. Among others,
you have to specify a unique fixed device name for each device in the configura-
tion file.

• The Windows 2000 PnP drivers provide an easy Plug & Play installation without
any necessary configuration tasks before driver installation. Usually, all installed
hw-devices will be automatically recognized. An auto-generated alterable unique
device name will be assigned to each installed sw-device.

!

!

Installing the Target System

MEN Mikro Elektronik GmbH 21
21M000-13 E2 - 2004-10-20

• The driver and device configuration can be modified with a registry editor (NT4
drivers) or via a property sheet (W2k PnP drivers). Win32 user mode application
can modify the configuration via special Win32 calls (refer to the MSDN library
for further information).

• If you have the intention to migrate from the Windows NT 4.0 drivers to the
Windows 2000 PnP drivers, you have to re-link all MDIS applications that are
statically linked with the MDIS-API library with MDIS-API library version >=
3.0.

Target Running Windows 2000/XP

It is not possible to mix both driver types (NT4/W2k) for a board and the
corresponding devices. That means an NT4 device driver (e.g. for an M-Module)
requires an NT4 board driver (e.g. for the carrier board where the M-Module
resides). The same goes for W2k drivers.

Generally, you should not use MDIS4 NT4 drivers and MDIS4 W2k drivers
together on one target system. Only if no native W2k driver is available for a device
(e.g. a serial interface) should a native NT4 driver for this device be mixed with
other W2k drivers on target systems without installed ACPI support. In this case, the
device serviced by an NT4 driver cannot be plugged on a carrier serviced by a W2k
board driver. This means you will require separate carrier boards for devices
serviced by NT4 device drivers and for devices serviced by W2k device drivers.

If you intend to mix the NT4 and W2k version of the same driver (e.g. for two D201
carrier boards) you must rename the NT4 driver (e.g. men_d201.sys) to a unique
name (e.g. men_d201nt4.sys). Furthermore, you have to change the HW_TYPE (e.g.
D201) in the corresponding descriptor file (e.g. d201_min.dsc) to the chosen unique
name (e.g. D201NT4). Otherwise, you will get name conflicts.

!

Installing the Target System

MEN Mikro Elektronik GmbH 22
21M000-13 E2 - 2004-10-20

A 4.3 Installing Windows NT 4.0 Drivers

For the event-log feature, you have to perform the following step once for your
target:

Copy the men_evlg.dll file from the %WORK%\W2K\TARGET_INSTALL path of
your host system to the %SystemRoot%\System32 system path of the target system.
This DLL will be used by the Windows Event Viewer to display the MEN specific
descriptions that correspond to the event entries logged by the MDIS drivers.

To install a driver on your target system, proceed as follows:

� Modify the driver-specific common meta descriptor (.dsc) according to your
target’s hardware configuration, then use the DESCGEN descriptor generator to
generate the .reg Windows NT descriptor from the modified .dsc descriptor. For
further information about descriptor files and how they can be created, refer to
Chapter A 5.4 NT4 Driver Descriptor Files on page 41.

� Copy the driver executable image file (.sys) from the %WORK%\NT\OBJ\SYS\
MEN\I386\FREE path of your host system to the %SystemRoot%\System32\Drivers
system path of the target system.

� Insert the driver parameters from the generated Windows NT descriptor into the
registry. To do this, you must copy the generated .reg file to an arbitrary path
(e. g. C:\MEN\REG) of the target system. To enter the information into the reg-
istry the file can simply be double-clicked or run from the command prompt.

N.B.:

If you plan to clone driver parameters from an already installed target system to
another target with an exported .reg file from the regedit registry editor, please
observe the following issues:

• Pay attention to copy the corresponding registry entries under \Regis-
try\Machine\System\CurrentControlSet\Services\EventLog\System\men_* as
well.

• Don't copy the Enum subkey from the source target to the destination target.
(See Chapter Subkey Enum on page 40).

� After adding a new driver key to the registry, you must reboot Windows NT to
register the new driver. However, it is not necessary to reboot Windows NT
after modifications of driver parameters in the registry for an already registered
driver!

� If the driver is not configured to start automatically, you have to start the driver
manually before you are able to access the devices belonging to the driver.
Refer to Chapter A 5.1 Starting and Stopping NT4 Drivers on page 36.

Note on .ini Files

If the driver comes with common meta descriptor files (.dsc) it is strongly
recommended to generate a Windows NT descriptor file (.reg) and to proceed as
described above. However, some older native Windows NT drivers come only with
.ini files, which contain the driver parameters. Chapter A 5.4 NT4 Driver Descriptor
Files on page 41 describes how you can enter the content of .ini files into the
registry.

!

Installing the Target System

MEN Mikro Elektronik GmbH 23
21M000-13 E2 - 2004-10-20

Note on Board Drivers for CompactPCI/PCI M-Module Carrier Boards

In the board descriptor, the location of each CompactPCI or PCI board (e. g. C203,
D201, F201) on the PCI bus must be specified. If you use descriptor key
PCI_BUS_SLOT to specify the geographical location of the board on a PCI bus,
you need additional parameters in the registry under the so-called PCI key
(HKEY_LOCAl_MACHINE\SOFTWARE\MEN\PCI). For a detailed description of
the PCI key, refer to Chapter A 5.4.2.6 CompactPCI/PCI M-Module Carrier Board
Driver Keys on page 48.

Note on Deinstalling Drivers

Normally it is not necessary to deinstall a driver, because you can disable any driver
as described in Chapter A 5.3 NT4 Driver Standard Parameters on page 39.
However, you can deinstall a driver on your target system as follows:

� Remove the driver executable image file (.sys) from the system path of the tar-
get system (%SystemRoot%\System32\Drivers).

� Remove the driver parameters from the registry. To do this, use a registry editor,
go to the services key (HKEY_LOCAL_MACHINE\HARDWARE\SYSTEM\
CurrentControlSet\Services) and remove the driver key (e. g. men_m66).

Installing the Target System

MEN Mikro Elektronik GmbH 24
21M000-13 E2 - 2004-10-20

A 4.4 Installing Windows 2000 PnP Drivers

This chapter describes some necessary basics about Windows 2000 PnP Drivers, the
Windows 2000/XP PnP mechanism and the procedure of the Windows 2000 PnP
Driver installation for the MEN hardware on your target system.

Please be aware that some described procedures are different for Windows 2000 and
Windows XP as annotated.

The Device is the Starting Point

The Windows 2000 PnP Driver installation sets the focus on the devices and not on
the drivers. This means that the installation of a driver is initiated by the installation
of a sw-device: You have to install a sw-device for each installed hw-device you
want to use. If you are adding a hw-device to your target system, a new sw-device
must be installed but not necessarily a new driver.

Furthermore, you are able to disable/enable an installed sw-device but Windows
2000 PnP Drivers cannot be manually started/stopped like Windows NT 4.0 drivers.

Device Manager

The Windows 2000/XP Device Manager is the essential tool to manage devices. It
provides you with information about how the hardware on your computer is
installed and configured, and which drivers are used for the devices. Through
Device Manager you can verify a device installation, update drivers, modify device
settings, and troubleshoot problems.

The Device Manager is integrated in the Computer Management, a collection of
administrative tools. To open Computer Management:

� Right-click on the My Computer desktop icon and select Manage.

Or

� Open the Control Panel, choose Administrative Tools and then Computer Man-
agement.

Unsigned Drivers

The provided Windows 2000 PnP drivers are generally not digitally signed by the
MS Windows Hardware Quality Labs (WHQL) because most of our drivers belong
to MEN-specific driver classes that are not supported by WHQL signing.
Furthermore, MEN has no intention to use the cost- and time-consuming WHQL
driver signing.

For unsigned drivers of certain driver classes you might see a warning during driver
installation or update. In this case you have to use option Continue Anyway to
complete the driver installation.

Note: Windows 2000/XP offer a Control Panel option to allow all device drivers to
be installed without warnings, regardless of whether they have a digital signa-
ture. If you want to set this option, refer to the operating system's Help.

Installing the Target System

MEN Mikro Elektronik GmbH 25
21M000-13 E2 - 2004-10-20

A 4.4.1 W2k Driver & PnP Basics

For a better understanding of the driver installation, you should know some basics
about the Windows 2000/XP PnP mechanism.

PnP and non-PnP Devices

Devices can be roughly divided into two groups: PnP and non-PnP devices.

A PnP device is a hw-device that can be automatically detected by a so-called bus
driver that is responsible for the bus/interface where the device resides. If a new PnP
device was installed, Windows detects the device automatically and searches for a
matching driver. If a proper driver was found on the computer, a corresponding sw-
device will be installed without any user interaction. Otherwise, Windows starts up
the Found New Hardware Wizard, which prompts the user for a driver.

A non-PnP device is a hw-device that cannot be automatically detected. If a non-
PnP device was installed, you must use the Add/Remove Hardware Wizard (W2k) or
Add Hardware Wizard (XP) in Control Panel to tell Windows what type of device
you are installing. The Add(/Remove) Hardware Wizard may ask you to select the
correct driver for the device.

MEN PnP Devices

Usually, the following type of MEN hw-devices are PnP devices and will be
detected by Windows:

• PC•MIPs, PMC modules, PCI onboard devices

• (Compact)PCI carrier boards for M-Modules

• ISA PNP onboard devices

• M-Modules, after the PnP driver installation of the corresponding carrier

The installation of PnP devices is described in Chapter A 4.4.3 Installing PnP
Devices on page 27.

MEN PnP Devices that Require a User-Initiated Installation

For a few PnP hw-devices a user-initiated installation (as for non-PnP devices) is
required. This is the case whenever one hw-device is used for standard tasks
(serviced by a standard driver) and also for OEM-specific features which require
special drivers. In this case, Windows installs its standard driver for the hw-device
but does not know that further drivers are required for the OEM-specific features
(virtual hw-devices). The user will not be promted to install further drivers for the
hw-devices. In this case a bus driver which enumerates the virtual hw-devices must
be manually installed via the Add(/Remove) Hardware Wizard.

For example:

On MEN’s F7/F7N/D4/EM02(EM05) CPU Board, the ICH82801(ALI1535) chipset
contains among others the registers for the watchdog functionality.

Since Windows installs its own driver for the chipset during the Windows setup, no
further drivers will be installed by PnP for the chipset.

The user first has to install the generic ISA(PCI) BBIS bus driver for the watchdog
through the Add/Remove Hardware Wizard. The MDIS4 driver packages for the F7/
F7N/D4/EM02(EM05) watchdog includes the proper .inf file for manual installation
of the ISA(PCI) BBIS driver. The ISA(PCI) BBIS driver itself is included in the

Installing the Target System

MEN Mikro Elektronik GmbH 26
21M000-13 E2 - 2004-10-20

MDIS4 System Package for Windows. After installation of this bus driver, the
Found New Hardware Wizard appears for the virtual watchdog device and asks for
the proper watchdog device driver.

MEN non-PnP Devices

The following type of MEN hw-devices are non-PnP devices and require manual
installation via the Add(/Remove) Hardware Wizard:

• ISA devices

• VMEbus devices

The installation of non-PnP devices is described in Chapter A 4.4.4 Installing Non-
PnP Devices on page 29.

A 4.4.2 Providing the Installation Files

The files required for the installation of Windows 2000 PnP drivers are located in
the host's target install folder (%WORK%\W2K\TARGET_INSTALL) and consist of
common installation files and driver package specific installation files:

The common installation files are installed on the host during the system package
installation and comprise:

• men_evlg.dll— MEN event log DLL

• men_mdis_clinst.dll— MEN class installer DLL

• men_qt-mt.dll— QT C++ class library

The driver package specific installation files are installed on the host during the
driver package installation and comprise:

• <article no.>.inf (e.g. 13m03606.inf) — Driver Package installation file

• <article no.>.xml (e.g. 13m03606.xml) — Driver Package description file

• <driver name e.g. men_m36>.sys— Windows 2000 PnP Driver

Note: A driver package may contain several .inf/.xml/.sys files.

Note: Common board drivers (e.g. C204, D203, ..) have no description files.

For the target installation, you have to provide the installation files from your host's
target install folder to the target. However, the common installation files must only
be supplied during the installation of the first PnP device belonging to the setup
class "MDIS devices" (e.g. an M-Module) and also during the installation of the first
PnP device belonging to the setup class "BBIS boards" (e.g. an M-Module carrier).
On the first installation, the corresponding device setup class (MDIS devices or
BBIS boards) will be registered and the common installation files are installed on
the target. Therefore, the common installation files are not necessary during the
installation of further MDIS devices or BBIS boards.

If the target has access to the host via a network connection (recommended during
your development phase): Share the host's %WORK%\W2K\TARGET_INSTALL
folder with the target or copy the content of the host's target installation directory to
an arbitrary folder on the target.

If you have no network connection between the host and target: Move the required
installation files of the driver package you want to install and the common
installation files—if necessary—to the target using an exchangeable medium.

Installing the Target System

MEN Mikro Elektronik GmbH 27
21M000-13 E2 - 2004-10-20

A 4.4.3 Installing PnP Devices

The Found New Hardware Wizard will guide you to the installation of a PnP device
if the required driver for the new plugged hw-device could not be found on the
target.

If you are plugging a further hw-device of the same model as an already present hw-
device and a sw-device for the present hw-device was installed you will not be
prompted by the Found New Hardware Wizard because the new hw-device will be
installed automatically.

Windows 2000

When the Found New Hardware Wizard appears:

� Click Next.

When the Install Hardware Device Drivers window appears:

� Take over the default selection Search for a suitable driver for my device (rec-
ommended) and click Next.

When the Locate Driver Files window appears:

� Uncheck all options except Specify a location and click Next.

When the drive selection window appears:

� Browse to the location of the driver installation files and click OK.

If Windows has found more than one matching driver, the Driver Files Search
Results window appears with the message "The wizard also found other drivers that
are suitable for this device:"

� Select Install one of the other drivers, otherwise the first driver found will be
installed (this may be the wrong driver) and you will not be prompted to select
the correct driver.

� Click Next.

Now the Driver Files Found window appears:

� Select the correct driver from the list. Please ignore the confusing Recom-
mended driver message that appears if the first listed driver is selected.

� Click Next.

If Windows has found only one matching driver the Driver Files Search Results
window appears without a message about other suitable drivers:

� Click Next.

When the Completing the Found New Hardware Wizard window appears:

� Click Finish.

!

Installing the Target System

MEN Mikro Elektronik GmbH 28
21M000-13 E2 - 2004-10-20

Windows XP

When the Found New Hardware Wizard appears:

� Select Install from a list or specific location (Advanced).

� Click Next.

When the Please choose your search and installation options window appears:

� Select Search for the best driver in these locations.

� Select Include this location in the search and browse to the location of the
driver installation files.

� Click Next.

If Windows has found only one matching driver, this will be installed immediately.

If Windows has found more than one matching driver, the Please select the best
match for your hardware from the list below window appears:

� Select the correct driver from the list. Please ignore the warning "This driver is
not digitally signed".

� Click Next.

When the Completing the Found New Harware Wizard window appears:

� Click Finish.

Installing the Target System

MEN Mikro Elektronik GmbH 29
21M000-13 E2 - 2004-10-20

A 4.4.4 Installing Non-PnP Devices

The Add/Remove Hardware Wizard (W2k) or Add Hardware Wizard (XP) will guide
you through the installation of non-PnP devices.

The installation of Non-PnP devices is necessary for bus drivers as described in
Chapter MEN PnP Devices that Require a User-Initiated Installation on page 25.

If you are installing a bus driver, then the bus driver will inform Windows about all
new found PnP devices on its served bus. Therefore the Found New Hardware
Wizard may apper after the installation of a non-PnP device and you have to perform
the installation for each new found PnP device according to Chapter A 4.4.3
Installing PnP Devices on page 27.

Windows 2000

� To open the Add Hardware Wizard, go to Start � Settings � Control Panel �
Add/Remove Hardware.

When the Add/Remove Hardware Wizard appears:

� Click Next.

When the Choose a Hardware Task window appears:

� Take over the default selection Add/Troubleshoot a device.

� Click Next.

When the Choose a Hardware Device window appears:

� Select Add a new device from the list.

� Click Next.

When the Find New Hardware window appears:

� Select No, I want to select the hardware from a list.

� Click Next.

When the Hardware Type window appears:

� Select Other devices from the list.

� Click Next.

When the Select a Device Driver window appears:

� Click Have Disk...

� Browse to the location of the driver installation files.

� Select MEN Mikro Elektronik as manufacturer.

� Select the model of the hardware device you want to install.

� Click Next.

When the Start Hardware Installation window appears:

� Click Next.

When the Completing the Add/Remove Hardware Wizard window appears:

� Click Finish.

Installing the Target System

MEN Mikro Elektronik GmbH 30
21M000-13 E2 - 2004-10-20

Windows XP

� To open the Add Hardware Wizard, go to Start � Control Panel � Add Hardware.

When the Add Hardware Wizard appears:

� Click Next.

� Wait while the wizard searches and press the Cancel button on each Welcome to
the Found New Hardware Wizard window that will appear. A few Welcome...
windows may appear and you have to wait until the wizard has finished the
search.

When the Is the hardware connected? window appears:

� Select Yes, I have already connected the hardware.

� Click Next.

When the The following hardware is already installed on your computer window
appears:

� Select Add a new hardware device from the list.

� Click Next.

When the The wizard can help you to install other hardware window appears:

� Select Install the hardware that I manually select from a list (Advanced).

� Click Next.

When the From the list below, select the type of hardware you are installing window
appears:

� Select Show All Devices from the list.

� Click Next.

When the Select the device driver you want to install for this hardware window
appears:

� Click Have Disk...

� Browse to the location of the driver installation files.

� Select MEN Mikro Elektronik as manufacturer.

� Select the model of the hardware device you want to install.

� Click Next.

When the The wizard is ready to install your hardware window appears:

� Click Next.

When the Completing the Add Hardware Wizard window appears:

� Click Finish.

Installing the Target System

MEN Mikro Elektronik GmbH 31
21M000-13 E2 - 2004-10-20

A 4.4.5 Reinstalling and Updating W2k PnP Drivers

You must manually initiate reinstalling or updating of drivers through the Device
Manager.

The Upgrade Device Driver Wizard (W2k) or Hardware Update Wizard (XP)
guides you through the process of reinstalling or updating a driver. Thereby, you
have to perform the same procedure as during the Found New Hardware Wizard
installation. See Chapter A 4.4.3 Installing PnP Devices on page 27.

A 4.4.5.1 Reinstalling a Driver for a PnP Device

Reinstalling a driver is required if the installation for a PnP device with the Found
New Hardware Wizard was canceled and the sw-device is not yet installed.

In the Device Manager, a yellow question mark will appear next to the incompletely
installed sw-device under the Other Devices group. Double-click on the device you
want to reinstall, then click the Reinstall Driver button on the General tab to start
the Wizard.

A 4.4.5.2 Updating a Driver for a PnP or non-PnP Device

Updating a driver is required if you want to upgrade the driver to the latest version.

In the Device Manager, double-click on the device you want to update, then select
the Driver Tab. The driver information shown shows the driver currently being used
by the system. Click Update Driver to start the Wizard.

Note: You can also perform a manual "quick and dirty" driver update, if you know
all the files belonging to the driver. This can be useful if you want to use the
checked version of a driver for debugging for some time. To do this, just copy
the checked driver version (e. g. %WORK%\W2K\OBJ\SYS\MEN\CHK\I386\
men_d201.sys) from the host to the target’s driver’s path (%System-
Root%\System32\Drivers) and then reboot the target.

Installing the Target System

MEN Mikro Elektronik GmbH 32
21M000-13 E2 - 2004-10-20

A 4.4.6 Notes for Hardware Device Configuration Changes

The following examples point out how hw-device configuration changes affect the
sw-device’s presence and installation. This PnP behavior could be an advantage but
also a drawback for your target application.

You should consider this behavior if you intend to alter the hw-device configuration
on your target.

Example 1—Plugging a new hw-device type

If a new type of hw-device was plugged (e.g. the first M66 M-Module):

• The Found New Hardware Wizard prompts you for the sw-device installation.

• The corresponding sw-device will be named <dev-type>_1 (e.g. m66_1).

Example 2—Plugging a further hw-device of an existing hw-device
type

If a further hw-device of the same type as an already installed hw-device was
plugged (e.g. a second M66 M-Module):

• The new sw-device is automatically installed.

• The corresponding sw-device will be named <dev- type>_2..n (e.g. m66_2).

Example 3—Removing or replacing a hw-device

If a hw-device (e.g. an M66 M-Module) was removed or replaced by a hw-device of
another type (e.g. an M36 M-Module):

• The corresponding sw-device (e.g. m66_1) vanishes from the Device Manager
tree.

• The name (e.g. m66_1) and settings (e.g. descriptor parameter ID_CHECK) of
the sw-device remain in the registry.

Example 4—Replugging a hw-device

If a hw-device (e.g. an M66 M-Module) was replugged to its old location:

• The corresponding sw-device (e.g. m66_1) reappears in the Device Manager
tree.

• The old name (e.g. m66_1) and settings (e.g. descriptor parameter ID_CHECK)
of the sw-device will be taken over from the registry.

!

Installing the Target System

MEN Mikro Elektronik GmbH 33
21M000-13 E2 - 2004-10-20

Example 5—Moving a carrier with plugged mezzanines

If a carrier board (e.g. a D201 M-Module carrier) with plugged hw-devices (e.g. two
M66 M-Modules) was moved from one slot to another:

• The Found New Hardware Wizard prompts you for the sw-device installation of
the moved carrier board.

Note: No auto-installation happens because the carrier may not be definitely recog-
nized and you have to select the right carrier board type manually.

• The old carrier board sw-device with its instance number (e.g. #1) and device
parameters vanish from the Device Manager tree and the newly installed sw-
device for the carrier board appears (e.g. #2).

• All sw-devices (e.g. m66_1 and m66_2) related to the plugged hw-device on the
carrier at the previous location vanish from the Device Manager tree. The names
(m66_1 and m66_2) and settings (e.g. descriptor parameters) of the vanished sw-
devices remain in the registry and will be re-used if the carrier board is again
moved to the previous location.

• New sw-devices will be installed (automatically) for the plugged hw-device on
the carrier and therefore the device names will be changed (e.g. to m66_3,
m66_4). The device settings (e.g. descriptor parameters) of the new sw-devices
will be set to the defaults.

Example 6—Device name pitfall

If you change a device name to a name of a sw-device that was not uninstalled (e.g.
m66_2) and whose related hw-device was removed (the corresponding sw-device
m66_2 is not visible) and then replug the removed hw-device, a second sw-device
with the same name (e.g. m66_2) will appear in the Device Manager tree.

In this case, you have to change the name of one of the two (m66_2) sw-devices to a
unique device name. However, to prevent you from accessing the wrong device, in
this case the MDIS-API M_open() function will return the error 0x04B0 "The
specified device name is invalid".

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 34
21M000-13 E2 - 2004-10-20

A 5 NT4 Drivers and Device Configuration

This chapter gives you detailed information on how Windows NT 4.0 drivers can be
started/stopped and which registry entries are involved in the driver configuration.
Furthermore, the Windows NT 4.0 driver-specific descriptor files and their
generation are explained.

Configuration Data

The driver and device configuration data comprise:

• Windows NT 4.0 driver-specific parameters, described in Chapter A 5.3 NT4
Driver Standard Parameters on page 39.

• MDIS4 standard descriptor parameters, described in Chapter B 4 MDIS Device
Descriptors on page 112.

• Low-level driver-specific descriptor parameters, described in the driver’s user
manual.

• Windows NT 4.0 driver-specific MDIS4 parameters, described in Chapter A
5.4.2 NT4 Driver-Specific MDIS Keys on page 46.

Configuration Location & Organization

The configuration data is located in the Windows registry and arranged like a folder
tree with "registry keys" (like a directory folder) and "registry values" (like a file).
Each registry value uses one of the registry-specific data types (e.g. REG_DWORD)
and stores the actual configuration data.

For each driver, a main registry key will be created during the driver installation
under HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services. The main
key is named after the driver's name (e.g. men_m22). The Windows NT 4.0 driver-
specific parameters (e.g. Start, ErrorControl, ...) are directly stored under the
driver's main key. Device-specific parameters (e.g. VALID) are stored under a device
sub-key (e.g. m22_1) that specifies the device name. All MDIS4 standard descriptor
parameters (e.g. BOARD_NAME) and parameters belonging to the low-level driver
(e.g. CHANNEL_0\INACTIVE) are located under the Parameters subkey beneath
the device-related key.

Example for the men_m22.sys driver, viewed with the regedt32 registry editor:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\men_m22
Start: REG_DWORD: 0x3
Group: REG_SZ: MEN_MODULE_DRIVER
DependOnGroup: REG_MULTI_SZ: MEN_BOARD_DRIVER
ErrorControl: REG_DWORD: 0x1
Type: REG_DWORD: 0x1
m22_1

VALID: REG_DWORD: 0x1
...
Parameters

BOARD_NAME: REG_SZ: D201_1
...
CHANNEL_0

INACTIVE: REG_DWORD: 0x1
...

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 35
21M000-13 E2 - 2004-10-20

Configuration Modification

The configuration data can be modified before driver installation in the descriptor
file (.dsc/.reg) or after driver installation in the registry using a registry editor. To
view, create, modify or delete registry keys and values, use one of the two Windows
NT 4.0 registry editors:

• regedt32.exe
This registry editor is tied tightly to the Windows NT platform and understands
certain data types that are unique to Windows NT.

• regedit.exe
A registry editor useful for searching a textual value in the registry and to import
and export registry files (.reg).

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 36
21M000-13 E2 - 2004-10-20

A 5.1 Starting and Stopping NT4 Drivers

Windows NT 4.0 kernel mode drivers are started according to information in the
Windows NT registry. If the Start parameter is set to Automatic (0x02) the driver
will be started during system start-up. The driver start may also depend on other
drivers (refer to Chapter A 5.2 Driver Dependencies on page 38). However, you can
start and stop drivers manually:

A 5.1.1 Starting Drivers Manually

If the Start value is not set to Disabled (0x04), you can start the driver manually

• from the command prompt, using command net start <drivername> or

• from the Device Control Panel Applet or

• from an application, using the Win32 StartService function.

A 5.1.2 Stopping Drivers Manually

If the driver is not in use, you can stop it manually

• from the command prompt, using command net stop <drivername> or

• from the Device Control Panel Applet or

• from an application, using the Win32 ControlService function.

If you try to stop a driver and the driver is already in use (a handle is still open to a
device serviced by the driver) the driver stop fails. In this case, as soon as all handles
to the device are closed the driver unloads automatically.

 Example #1, "device driver is being used by an application"

• Driver men_m22 is started.

• A handle from an application to device m22_1 is opened.

• Try to stop the driver from the command prompt using command net stop men_m22.
� The following error message appears:

• Close all opened handles to the devices serviced by the men_m22 driver.
� The driver stops.

The men_m22 service could not be stopped.

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 37
21M000-13 E2 - 2004-10-20

Example #2, "board driver is being used by a device driver"

• Board driver men_d201 is started (serviced board: d201_1).

• Device driver men_m22 is started (serviced device: m22_1 located on d201_1).

• Try to stop the board driver: net stop men_d201
� The following error message appears:

• Try to stop the device driver: net stop men_m22
� The following success message appears:

� The men_d201 driver is also stopped.

The behavior described in example #2 is only valid for device drivers built with MK
library rev. 1.17 or higher and board drivers built with BK library rev. 1.8 or higher.
You can query the library revisions of a driver through the MDISNT utility. (Refer to
Chapter A 9.1.4 Getting Revision Information on MDIS Modules on page 77.)

Note: If the drivers use older MK or BK libraries, you may get a blue screen if you
try to stop a board driver which is still being used by a device driver. There-
fore, be careful if you want to stop a board driver!

The men_d201 service could not be stopped.

The men_m22 service was stopped successfully.

!

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 38
21M000-13 E2 - 2004-10-20

A 5.2 Driver Dependencies

Commonly, MDIS drivers specify the following driver dependencies under their
driver key in the registry:

At start-up, when a device driver with a DependOnGroup=MEN_BOARD_DRIVER
is started (automatically or manually), Windows NT will attempt to start all the
board drivers in the prerequisite group (with a Group=MEN_BOARD_DRIVER)
that have not already been started and are not explicitly marked as Disabled
(Start=0x04). If any of the board drivers starts, the device driver with the
dependency will also be started. If none of the board drivers with a
Group=MEN_BOARD_DRIVER starts successfully, the device driver with the
dependency will not be started and Windows NT enters an appropriate entry in the
Windows NT event log.

Note: It is not necessary to enter the driver groups MEN_BOARD_DRIVER and
MEN_MODULE_DRIVER into the registry group list
(HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Service-
GroupOrder\List).

The start condition of a driver can also depend on one special driver:

When a device driver DRV2 with a DependOnService=DRV1 attempts to start,
Windows NT will try to start DRV1 (if DRV1 is not explicitly marked as Disabled)
before DRV2. DRV2 will only be started if DRV1 has started successfully.

Note: DRV1 and DRV2 are placeholders for driver names.
Example: The men_lm78_f2.sys device driver requires the men_z8536_f2.sys
device driver. Therefore you must specify 'men_z8536_f2' as DRV1 and
'men_lm78_f2' as DRV2 to force that men_lm78_f2.sys will only be started if
the men_z8536_f2.sys is running.

Board Driver: Group=MEN_BOARD_DRIVER
Device Driver: Group=MEN_MODULE_DRIVER, DependOnGroup=MEN_BOARD_DRIVER

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 39
21M000-13 E2 - 2004-10-20

A 5.3 NT4 Driver Standard Parameters

This section only describes the standardized Windows values used by MEN's
Windows NT 4.0 drivers. The MDIS-related entries are described in Chapter A 5.4
NT4 Driver Descriptor Files on page 41 and in Chapter B 4 MDIS Device
Descriptors on page 112.

Start

This value indicates if the driver will be started automatically during the system
startup, manually on request or if the driver cannot be started:

Table A1. Registry Entry Start

The startup types Boot (0x00) and System (0x01) should not be used for MDIS-
related drivers, the default value is Manual (0x03). The Start Value can be changed
directly in the registry or via the Device Control Panel Applet.

Group

This value specifies a driver group to which the driver belongs. MDIS drivers use
the following driver groups:

Table A2. Registry Entry Group

DependOnGroup

This value identifies a prerequisite driver group or specific driver on which the
driver start-up depends. MDIS drivers use the following dependencies:

Table A3. Registry Entry DependOnGroup

Hex Value
in Registry

Startup Type in
Device Control Panel

Applet
Meaning

0x02 Automatic Driver is started during system startup

0x03 Manual Driver is started on request

0x04 Disabled Driver cannot be started

String Value in Registry Used by

MEN_BOARD_DRIVER board driver

MEN_MODULE_DRIVER device driver

String Value in Registry Used by

MEN_MODULE_DRIVER board driver

(none) device driver

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 40
21M000-13 E2 - 2004-10-20

ErrorControl

This value determines which action the system takes if a driver fails to load
successfully at auto-start:

Table A4. Registry Entry ErrorControl

The default value for MDIS-related drivers is 0x01.

Type

This value indicates the type of component that this entry represents and must
always be 0x01 (kernel-mode driver) for MEN drivers.

Subkey Enum

Under the Enum subkey, Windows NT stores information about the hardware
configuration of the devices controlled by a driver.

The operating system adds the Enum subkey during the first start of the related
driver. The key must not be modified.

Note: If you save the driver's registry entries from a target in a .reg file for cloning
another target with the same driver parameters, pay attention that the Enum
subkey is not copied. Otherwise, it may be impossible to start the driver on
the cloned target.

Hex Value in Registry Meaning

0x00 Load errors are ignored.

0x01 Load errors are logged to the system
event log.

0x02 Load errors are logged to the system
event log.

The system is restarted by using Last
Known Good configuration. If Last
Known Good configuration is booted,
load continues.

0x03 Load errors are logged to the system
event log.

The system is restarted by using Last
Known Good configuration. If Last
Known Good configuration is booted,
the boot is aborted.

!

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 41
21M000-13 E2 - 2004-10-20

A 5.4 NT4 Driver Descriptor Files

Descriptors are operating system-specific files that hold parameters for drivers. For
Windows NT, MDIS uses .reg files as descriptor files. The content of the descriptors
must be entered in the Windows NT registry where the driver-related parameters
must be stored.

The Windows NT descriptors are generated from the operating system-independent
meta descriptors, which are ASCII files with file extension .dsc. A .reg descriptor is
also an ASCII file that can be modified. However, the common descriptor
parameters should only be edited in the .dsc files which contain additional
comments for the parameters.

Apart from the common descriptor parameters held in the meta descriptors,
Windows NT descriptors contain additional NT specific parameters (e. g. Start,
Group, etc.). The descriptor generator automatically inserts the NT specific
parameters into the .reg file.

The Windows NT specific parameters are described in Chapter A 5.4.2 NT4 Driver-
Specific MDIS Keys on page 46. For a complete description of meta descriptors and
keys refer to Chapter B 4 MDIS Device Descriptors on page 112.

Note on .ini Descriptors

Some older native Windows NT driver packages contain .ini files instead of meta
descriptors (.dsc) or .reg descriptors. The .ini files hold the same information as the
.reg files but use a different syntax.

Example of the m45_min.ini descriptor:

Microsoft’s regini.exe tool, which is contained in the Microsoft DDK, automatically
transfers the registry entries from the .ini file to the registry. For licensing reasons,
however, MEN is not allowed to supply regini.exe.

\Registry\Machine\System\CurrentControlSet\Services\men_m45
Type = REG_DWORD 0x00000001
Start = REG_DWORD 0x00000003
Group = REG_SZ MEN_MODULE_DRIVER
DependOnGroup = REG_MULTI_SZ MEN_BOARD_DRIVER
ErrorControl = REG_DWORD 0x00000001
m45_1

VALID = REG_DWORD 1
Parameters

BOARD_NAME = REG_SZ "d201_1"
DEVICE_SLOT = REG_DWORD 0
...

\Registry\Machine\System\CurrentControlSet\Services\EventLog\System\men_m45
EventMessageFile = REG_EXPAND_SZ
"%SystemRoot%\System32\IoLogMsg.dll;%SystemRoot%\System32\men_evlg.dll"
TypesSupported = REG_DWORD 0x00000007

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 42
21M000-13 E2 - 2004-10-20

To insert the content of the .ini file into the registry of your target system using
regini.exe, proceed as follows:

� Copy the .ini file as well as regini.exe to an arbitrary path (e. g. C:\MEN\REG)
of the target system.

� From the command prompt, go to the path where the copied files reside and call
regini.exe followed by the name of the .ini file.
Example:

The registry entries can also be manually inserted into the registry, using the registry
editor regedit32 or regedit.

You must adapt the parameters to your system configuration – either in the .ini file
before making the entry via regini.exe or directly in the registry.

A 5.4.1 Generating .reg Descriptors for NT4 Drivers

Use the DESCGEN descriptor generator to generate a Windows NT descriptor (.reg)
from a common meta descriptor (.dsc). You will find descgen.exe in the executable
path of your MDIS4 installation (%WORK%\NT\OBJ\EXE\MEN\I386\FREE). Use
option -winnt to generate a .reg file for Windows NT.

For convenience, add the %WORK%\NT\OBJ\EXE\MEN\I386\FREE path to the
PATH environment variable of your host system. Then you can call DESCGEN from
every folder as implemented in the following examples.

To show you how to generate .reg descriptors, let’s assume you want to use two M66
M-Modules on one D201 M-Module carrier board.

A 5.4.1.1 Using Descriptor Templates

Usually, each MDIS4 driver comes with descriptor templates (e. g. xxx_min.dsc,
xxx_max.dsc). The min file includes only the mandatory descriptor keys, while the
max file includes all possible keys.

You will most likely need only the mandatory descriptor keys, but for special system
and driver configurations you must also use some optional descriptor keys from the
max descriptor. Refer to the corresponding driver manual for a description of
optional driver-specific keys.

Basically, it depends on your personal preferences whether you use the min or the
max descriptor as a template for your own descriptor. You can begin with the min
descriptor as a starting point for your own descriptor and then add all optional keys
you need from the max descriptor.

C:\MEN\REG> regini m50_min.ini

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 43
21M000-13 E2 - 2004-10-20

A 5.4.1.2 Generating a Board Descriptor

For a D201 M-Module carrier board, you will find the two meta descriptors to build
the board descriptor:

� Make a copy of one of the templates and name it d201_my.dsc:

� Before generating the descriptor you must edit PCI_BUS_PATH and
PCI_BUS_SLOT in this file to specify the location of the D201 on the PCI bus
in your system. (See Chapter B 4.4.2 CompactPCI M-Module Carrier Boards
on page 120.)

� Then generate the board descriptor:

This produces the following descriptor:

%WORK%\NT\DRIVERS\BBIS\D201\DRIVER\COM:
d201_min.dsc
d201_max.dsc

D201_1 {
#--
general parameters (don't modify)
#--
DESC_TYPE = U_INT32 2 # descriptor type (2 = board)
HW_TYPE = STRING D201 # hardware name of device
#--
PCI configuration
#--
PCI_BUS_PATH = BINARY 0x08 # device IDs of bridges to

CompactPCI bus
PCI_BUS_SLOT = U_INT32 3 # CompactPCI bus slot (1 = CPU)
}

%WORK%\NT\DRIVERS\BBIS\D201\DRIVER\COM>
descgen d201_my.dsc –winnt

%WORK%\NT\DRIVERS\BBIS\D201\DRIVER\COM
d201_my.reg

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 44
21M000-13 E2 - 2004-10-20

A 5.4.1.3 Generating a Device Descriptor

After building the board descriptor, you must generate the device descriptor.

After installing the low-level package, you will find meta descriptors in the driver’s
main folder. For the M66 M-Module, you will find the two meta descriptors to build
the device descriptor:

� Make a copy of one of the templates and name the file m66_my.dsc.

� Now you have to edit m66_my.dsc before generating the descriptor.
For the simple case of the M66 M-Module, you only need to change
BOARD_NAME and DEVICE_SLOT to match the device name and slot of the
carrier board where the M66 M-Module is installed. In our example we will
build a device descriptor (m66_my.dsc) for two M66 M-Modules from one meta
descriptor:

� Then generate the device descriptor:

This produces the following .reg descriptor:

%WORK%\NT\DRIVERS\MDIS_LL\M066\DRIVER\COM:
m66_min.dsc
m66_max.dsc

M66_1 {
#--
general parameters (don't modify)
#--
DESC_TYPE = U_INT32 1 # descriptor type (1=device)
HW_TYPE = STRING M066 # hardware name of device
#--
base board configuration
#--
BOARD_NAME = STRING D201_1 # device name of base board
DEVICE_SLOT = U_INT32 0 # used slot on base board (0..n)
}

M66_2 {
#--
general parameters (don't modify)
#--
DESC_TYPE = U_INT32 1 # descriptor type (1=device)
HW_TYPE = STRING M066 # hardware name of device
#--
base board configuration
#--
BOARD_NAME = STRING D201_1 # device name of base board
DEVICE_SLOT = U_INT32 1 # used slot on base board (0..n)
}

%WORK%\NT\DRIVERS\MDIS_LL\M066\DRIVER\COM>
descgen m66_my.dsc –winnt

%WORK%\NT\DRIVERS\MDIS_LL\M066\DRIVER\COM:
m66_my.reg

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 45
21M000-13 E2 - 2004-10-20

A 5.4.1.4 Generating a Multi-Driver Descriptor

In the preceding example, one .reg descriptor was generated for each driver. It is
also possible to generate a .reg descriptor for several drivers, called a multi-driver
descriptor. To do this, you must specify all .dsc files that are to be used to build the
.reg file.

To show you how to generate multi-driver descriptors, let’s assume you want to use
two M66 M-Modules, one M55 M-Module and one D201 M-Module carrier board.

� For each driver, make a copy of one of the templates and name the files
m66_my.dsc, m55_my.dsc and d201_my.dsc, and put them into an arbitrary
folder (e. g. C:\MYCONFIG).

� Now you have to edit each file to specify the system configuration before gen-
erating the descriptor.

� Then generate the descriptor:

This produces the following descriptor:

The multi-driver descriptor file will be named after the first specified .dsc file
(d201_my). However, d201_my.reg contains the configuration data of all the
specified .dsc files.

C:\MYCONFIG>descgen –winnt d201_my.dsc m66_my.dsc m55_my.dsc

\ MYCONFIG:
d201_my.reg

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 46
21M000-13 E2 - 2004-10-20

A 5.4.2 NT4 Driver-Specific MDIS Keys

The generated .reg descriptors contain additional parameters that are Windows NT
specific and are not present in the common meta descriptors. These parameters can
be divided into two groups:

• Kernel-mode driver specific keys, which are described in Chapter A 5.3 NT4
Driver Standard Parameters on page 39.

• MDIS-related keys, which are described in this Chapter.

A 5.4.2.5 Device and Board Driver Keys

This section describes Windows NT specific MDIS keys, common to all device
drivers and board drivers. The following figure shows the keys in the regedt32 view:

VALID

The value indicates if the corresponding device parameters are valid (0x1) or not
(0x0). It can be used to disable an individual device of a driver without removing
the device specific keys from the registry.

For example, let’s assume that we have two M66 M-Modules with the
corresponding device names m66_1 and m66_2. Now, we have to remove one M66
M-Module (m66_1) for testing purposes. We will set VALID=0x00 so that the M66
driver does not try to create the m66_1 device for the non-existing M66 M-Module:

DEBUG_LEVEL_ENTRY

This value specifies an additional driver specific debug level for the Windows NT
specific DriverEntry routine which creates the corresponding devices. Like all
debug levels, the parameter is only relevant for the checked version of a driver. The
default value is 0xC0008000. For a detailed description of debug levels, refer to
Chapter B 4.5 Driver Debugging on page 124.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\men_xxx
...
ADDRESS_SHARING: REG_DWORD: 0x03
DEBUG_LEVEL_ENTRY: REG_DWORD: 0xc0008000
mxx_1

VALID: REG_DWORD: 0x1
Parameters

...

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog\
System\men_xxx
EventMessageFile: REG_EXPAND_SZ: %SystemRoot%\System32\
IoLogMsg.dll;%SystemRoot%\System32\men_evlg.dll
TypesSupported: REG_DWORD: 0x7

HKEY_LOCAL_MACHINE\HARDWARE\SYSTEM\CurrentControlSet\Services\men_m66
...
m66_1

VALID: REG_DWORD: 0x0
...

m66_2
VALID: REG_DWORD: 0x1
...

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 47
21M000-13 E2 - 2004-10-20

ADDRESS_SHARING

This value specifies if and how the operating system assigns the address resources
used by the driver. The ADDRESS_SHARING key is supported by device drivers
built with MK library rev. 1.10 or higher and board drivers built with BK library rev.
1.3 or higher. You can query the library revisions of a driver through the MDISNT
utility. (Refer to Chapter A 9.1.4 Getting Revision Information on MDIS Modules
on page 77.)

Table A5. Driver Key ADDRESS_SHARING

By default, this entry does not exist, and the address resources are assigned as
device-exclusive resources (0x01). The ADDRESS_SHARING parameter should
only be used for very special situations, e. g. if Windows NT detects an address
conflict between a MEN driver and a third-party driver. This may happen if a
VMEbus PC with a PCI-to-VME bridge is used and the driver must assign the same
address resources that are assigned by a VME-to-PCI bridge specific driver. In this
case you need detailed information about the used address resources and whether it
is indicated that more than one device use the same address resources.

EventLog Entry

The entry ..\EventLog\System\men_xxx registers the men_xxx driver for the
Windows NT event-log service. The respective parameters tell the event-log service
that the IoLogMsg.dll and men_evlg.dll DLLs contain the descriptions belonging to
the event entries logged by the men_xxx driver.

If the men_evlg.dll is not installed, a driver is not registered under
..\EventLog\System\ or the Windows NT Event Viewer cannot display the event
strings that correspond to the entries logged by the driver.

String Value in
Registry Meaning

0x01 Address resources assigned as device-exclusive resources.

0x02 Address resources assigned as driver-exclusive resources.

The address resources can be shared by several devices of
this driver.

0x03 Address resources assigned as shared resources.

The address resources can be shared by several drivers.

0xFF Address resources are not assigned.

Windows NT cannot detect any address conflict between this
driver and any other driver that uses the same address
resources.

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 48
21M000-13 E2 - 2004-10-20

A 5.4.2.6 CompactPCI/PCI M-Module Carrier Board Driver Keys

This information applies to all board drivers for CompactPCI/PCI M-Module carrier
boards, e. g.:

• men_d201.sys

• men_c203.sys, men_c204.sys

• men_f201.sys, men_f202.sys

First of all, remember the PCI-bus basics:

• One system can have up to 256 separate PCI busses (0..255), connected over
PCI-to-PCI bridges.

• 32 physical units (0..31, called devices) can be plugged into one bus. Each Com-
pactPCI/PCI slot on which a physical unit can be plugged is assigned to one PCI
device ID (unique to the assigned PCI bus).

• Each device can contain up to 8 separate functional units (0..7, called functions).

• Interrupt mechanisms:
The PCI bus has four equal-priority interrupt request lines (INTA..INTD) which
are active-low, level-triggered, and shareable. Each function can be connected to
only one request line. On a PC architecture, the redirector converts a given
request on INTA..INTD into a request on one of the IRQ0..IRQ15 lines. BIOS
stores the assigned IRQ number in the interrupt line register of the PCI Configu-
ration Space.

• Device memory:
Dedicated memory used by PCI functions, which can reside anywhere in a 32-bit
address space. Up to six address spaces can be assigned to one function. On a PC
architecture, normally the BIOS assigns the requested memory spaces to the PCI
function and stores address information in the Base Address Registers of the PCI
Configuration Space.

• PCI Configuration Space:
Each individual function has its own 256-byte storage area for configuration
data, called PCI configuration space. The first 64 bytes of any PCI configuration
space has a predetermined structure for common information (e. g. about vendor,
device type, memory resources, interrupt). The PCI configuration space can be
accessed through two special registers in the I/O address space.

The board driver of a CompactPCI/PCI M-Module carrier board must know the
location of the supported boards in the CompactPCI/PCI system. Since the
described boards use only one PCI function (0), this comprises two pieces of
information:

• the number of the PCI bus

• the device number on the PCI bus

The current releases (version 2.0 and higher) of the board drivers named above
support the following alternatives to specify the location of the carrier board on the
PCI bus:

Two alternative descriptor keys to specify the PCI bus number:

• PCI_BUS_NUMBER

• PCI_BUS_PATH (requires board driver version 2.0 and higher)

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 49
21M000-13 E2 - 2004-10-20

Two alternative descriptor keys to specify the PCI device number:

• PCI_BUS_SLOT

• PCI_DEVICE_ID (requires board driver version 2.0 and higher)

Refer to Chapter B 4.4.2 CompactPCI M-Module Carrier Boards on page 120 for a
detailed description of these keys.

PCI_BUS_SLOT

This key specifies the geographical location of the board on a single PCI bus:

• CompactPCI: On CompactPCI systems, slot 1 (marked by a triangle) is always
the system slot where the CPU board is plugged. The neighboring slot is slot 2,
and so on.

• PCI: On a standard PC motherboard, the slots are either numbered by the manu-
facturer or it’s up to you to define slot 1 and number all slots sequentially.

If the PCI slots belong to different PCI busses, you should number the slots for each
PCI bus separately.

Since the allocation of PCI device IDs to the geographical PCI slots depends on the
backplane of the PCI system, PCI_BUS_SLOT requires additional parameters in the
registry under the following PCI key:

For each PCI bus in the system, two parameters must be specified:

• mechanicalSlot_1 – must be the PCI device ID of slot 1

• mechanicalSlot_n – must be the PCI device ID of any other slot (2, 3, etc.)

If PCI_BUS_SLOT is specified, the board driver calculates the PCI device ID from
the geographic bus-slot number (PCI_BUS_SLOT) and the mechanicalSlot_..
parameters. The board driver uses mechanicalSlot_n only to evaluate if the PCI IDs
are assigned to the slots in ascending or in descending order.

You will find the right entries for MEN’s D1, D2 and F2 CompactPCI systems as
imaged above in the pci.reg file under %WORK%/NT/DRIVERS/BBIS/PCI/pci.reg
of your host system. Normally, the backplane of a D1 system is assigned to PCI bus
1, the backplane of a D2 or F2 system is assigned to PCI bus 2.

If you use a PCI M-Module carrier board (e. g. C203, C204) for a standard PCI
motherboard you must know the PCI bus number and the PCI device IDs for at least
two PCI slots.

HKEY_LOCAL_MACHINE\SOFTWARE\MEN\PCI
bus_0

mechanicalSlot_1: REG_DWORD: 0xc
mechanicalSlot_n: REG_DWORD: 0x9

bus_1
mechanicalSlot_1: REG_DWORD: 0x10
mechanicalSlot_n: REG_DWORD: 0xf

bus_2
mechanicalSlot_1: REG_DWORD: 0x10
mechanicalSlot_n: REG_DWORD: 0xf

...

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 50
21M000-13 E2 - 2004-10-20

The following example illustrates how you can determine the PCI device IDs for
PCI slot 1 and PCI slot n using PCIView, a GUI-based utility from BlueWater
Systems (see Chapter A 9.1.7 Viewing the PCI Configuration Space on page 78)
that displays the PCI Configuration Space of any PCI device in your system.

Assumed hardware:

• Motherboard with four PCI slots (1..4)

• Network adapter plugged on PCI slot 1

• MEN C204 M-Module carrier board plugged on PCI slot 3 (any slot higher than 1)

Do the following:

� Start the PCIView utility.

� In a combo-box you can select one of the existing PCI devices, then PCIView
displays the corresponding PCI Configuration Space of the selected device.

� PCIView shows the Vendor Name, Device Name and Device Type in plain lan-
guage, so that you can identify the plugged network card and the MEN carrier
board:

Table A6. Example of PCIView Utility

Now, you have the following information:

• Both boards are located on PCI bus 0.

• The network adapter on slot 1 has the device ID 12 (0x0C).

• The C204 board on slot 3 has the device ID 10 (0x0A).

� Now, you can specify the PCI registry entries for this standard PCI mother-
board:

PCI (Bus)
Dev/Func

Vendor
Name

(Vendor ID)

Device Name
(Device ID)

Base Class
Sub Class

Corresponding
Board

(0) 12/0 Realtek
(0x10EC)

NE2000 compati-
ble (0x8029)

Network
(0x02)

Ethernet
(0x00)

Network Adapter

(0) 10/0 PLX Tech-
nology
(0x10B5)

PCI 9050 Target
PCI Interface Chip
(0x9050)

Bridge
(0x06)
Other
(0x80)

MEN’s C204

HKEY_LOCAL_MACHINE\SOFTWARE\MEN\PCI
bus_0

mechanicalSlot_1: REG_DWORD: 0xc
mechanicalSlot_n: REG_DWORD: 0xa

NT4 Drivers and Device Configuration

MEN Mikro Elektronik GmbH 51
21M000-13 E2 - 2004-10-20

Note: The PCI registry parameters can be global or can be defined for each individ-
ual Windows NT hardware profile:

• Registry path for global allocation:
HKEY_LOCAL_MACHINE\SOFTWARE\MEN\PCI\

• Registry path for current Windows NT hardware profile:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Hardware Pro-
files\Current\Software\MEN\PCI\

The board driver first tries to read the parameters from the path for the current
hardware profile. If there are no parameters, they are read from the path for global
allocation. The parameters specific to a hardware profile have a higher priority than
the global parameters.

W2k Drivers & Device Configuration

MEN Mikro Elektronik GmbH 52
21M000-13 E2 - 2004-10-20

A 6 W2k Drivers & Device Configuration

This chapter gives you some information about Windows 2000 PnP Drivers and
describes how to configure Windows 2000 PnP drivers and their devices.
Furthermore, the Windows 2000 PnP driver-specific parameters are explained.

Bus & Function Drivers

We will not describe the architecture of Windows drivers here, but for a better
understanding you should know what type of Windows 2000 PnP drivers are
provided:

• MEN Device Drivers (e.g. for M-Modules) are function drivers. All devices cre-
ated by these drivers belong to the device setup class "MDIS devices".

• MEN Board Drivers (e.g. for carrier boards) are bus drivers. All devices created
by these drivers belong to the device setup class "BBIS boards".

As noted in Chapter A 4.4.1 W2k Driver & PnP Basics on page 25, a bus driver is a
driver that enumerates all devices residing on a particular bus/interface. For
example: Windows 2000/XP comes with the PCI bus driver that scans all PCI buses
for newly connected PCI devices during the Windows boot phase. If a new PCI
device was found, Windows tries to install a matching function driver for the PCI
device. A function driver creates a device instance (the sw-device) for each hw-
device that is accessible from your application via the device name. The function
driver gets the necessary resources (I/O, memory, interrupt) for their operation from
the corresponding bus driver.

For further differences between bus and function drivers, refer to Chapter A 1.5
How MDIS4 Maps into the Windows NT Architecture on page 10.

Configuration Data

The driver and device configuration data comprise:

• Windows 2000 PnP driver-specific parameters, described in Chapter A 6.1 W2k
Device Parameters on page 53.

• A subset of the MDIS4 standard descriptor parameters, described in Chapter B 4
MDIS Device Descriptors on page 112.

• Low-level driver specific descriptor parameters, described in the driver’s user
manual.

The device configuration can be modified after the driver installation via a device
property page, accessible over the Windows Device Manager.

Note: It is also possible to change the default device and driver configuration com-
monly for a hw-device type (not an individual hw-device) in the .inf file
belonging to the hw-device type. This is not the usual way and requires an
extensive knowledge about .inf files. MEN does not support this possibility
but you can do this on your own risk. Refer to the MSDN Library for further
information.

W2k Drivers & Device Configuration

MEN Mikro Elektronik GmbH 53
21M000-13 E2 - 2004-10-20

A 6.1 W2k Device Parameters

The Windows 2000 PnP driver-specific parameters can be accessed via the Device
Property page, accessible over the Windows Device Manager.

Use the view option Devices by connection to easily recognize which device (e.g.
M-Module) resides on which board (e.g. carrier board):

Double-click on a desired device (e.g. an M36 M-Module plugged on a D201 PCI
carrier board) to open the corresponding Device Property page:

W2k Drivers & Device Configuration

MEN Mikro Elektronik GmbH 54
21M000-13 E2 - 2004-10-20

The Device Property page of MEN's Windows 2000 PnP drivers comprises the
following tabs:

• General

• Device Settings

• Driver

• Resources (optional)

The General, Driver and Resources tabs are the usual standardized Windows tabs.
Refer to the Windows documentation for further details.

Device Location

The General tab provides, among others, the location information of the device.
Click on the Location information and then scroll right to view the entire location
description:

In this example, you can see that the M36 M-Module is plugged in the M-Module
slot #3 on a D201 M-Module carrier board which resides on PCI bus 0, device 15,
function 0.

For PCI devices, the given PCI slot number (6 in this example) in the location
information is normally not usable for CompactPCI systems. For a PCI device
residing on a PC motherboard with a properly implemented BIOS it may be an
important information on whose physical PCI slot a device is plugged. However, use
the exact and always correct PCI bus/device/function information to determine the
location of a PCI device.

M-Module slot 3 of D201 board in PCI Slot 6 (PCI bus 2, device 15,
function 0)

!

W2k Drivers & Device Configuration

MEN Mikro Elektronik GmbH 55
21M000-13 E2 - 2004-10-20

Resources Information

Although basically all MDIS devices use resources (I/O, memory, interrupt), many
Device Property pages (e.g. for M-Modules) contain no resource tab. Unfortunately
only the MS bus drivers are able to split bus resources between several residing
devices. Actually, the Resources tab displays all the resources currently assigned to
the selected device (not the used resources).

However, you can use the Resources tab of the device's board instance (e.g. M-
Module carrier board) where the device resides to view all resources assigned to the
board and all the belonging devices together:

W2k Drivers & Device Configuration

MEN Mikro Elektronik GmbH 56
21M000-13 E2 - 2004-10-20

Device Settings

The Device Settings tab designed by MEN depends on the driver type (function/bus
driver). The main difference is that all Device Settings tabs of a function driver
related device have a Device Name setting section whereas the Device Settings tabs
of a bus driver do not.

Device Settings tab of a function driver (e.g. M36 M-Module):

Modifying the Device Name

The default device name will be set during the sw-device installation to <dev-
model>_1..n (e.g. to m36_1 for the first M36 M-Module, m36_2 for the second).

Note: After you have changed the device name, the system may prompt you to
restart the computer. This is not necessary.

Windows XP: The new device name will not be shown in the device tree until the
Device Manager is re-opened. However, the current device name will always be
displayed in the "Current" text box on the Device Settings tab.

The device name can be changed to an arbitrary name via the Device Settings tab
with the following restrictions:

• The length of the device name is limited to 25 characters.

• The name must not contain any blanks or non-printable characters.

• The name must be unique, i.e. no other MDIS sw-device must have this name.

W2k Drivers & Device Configuration

MEN Mikro Elektronik GmbH 57
21M000-13 E2 - 2004-10-20

Cloning MDIS Device Parameters

The Clone button of the MDIS Device Parameters section allows you to assign all
MDIS device parameters of the current device to all installed device of the same
device type.

Example: If you have three M36 M-Module devices installed and you need the same
MDIS Device Parameters configuration for all three devices, just configure the
MDIS Device Parameters of only one M36 device and then press the Clone button
of this device. After this, all three M36 devices have the same MDIS device
parameters.

The next chapter describes how to configure the MDIS device parameters.

W2k Drivers & Device Configuration

MEN Mikro Elektronik GmbH 58
21M000-13 E2 - 2004-10-20

A 6.2 MDIS4 Device Parameters

The MDIS4 device parameters comprise a subset of the MDIS4 standard descriptor
parameters and the low-level driver specific descriptor parameters.

Viewing and Modifiying MDIS4 Device Parameters

To view or modify MDIS4 device parameters: In the Device Manager open the
Device Property page of the desired device, select the Device Settings tab and then
press the Configure button. The Properties of xxx window appears, which you may
already know if you have worked with one of MEN's other MDIS4 System
Packages (e.g. for Linux, VxWorks, ...) and which uses the same Properties of xxx
window (within the MDIS Wizard) for configuration tasks on the host before the
target installation.

Note: The Properties of xxx window is written using Trolltech's QT, a multiplat-
form, C++ application framework that lets developers write one application
that will run on several platforms.

Descriptor Tab

The Properties of xxx window comprises two tabs: Descriptor and Debug Settings.
The Descriptor tab displays in an explorer-like view the MDIS4 device parameters
and their current values with a short description.

Double-click on the desired parameter to modify its value. A further, parameter-type
dependent window appears that gives you the option to use the default value or to
specify another, parameter-specific value.

W2k Drivers & Device Configuration

MEN Mikro Elektronik GmbH 59
21M000-13 E2 - 2004-10-20

Changing a parameter value is easily provided with parameter appropriate controls,
e.g. a drop-down list box that contains fixed predefined values (left figure above) or
a common edit box (right figure above) where you can enter your desired value.
Furthermore, the window displays the parameter name, type, description, value
explanation and supports value range checking if applicable. Press the OK button to
assign the specified value or the Cancel button to abort.

Debug Settings Tab

The Debug Settings tab lists the set debug level of each software module used by the
driver belonging to the device.

Use the drop-down list box to change the debug level. The four provided debug
levels set the following hex values for the debug descriptor parameters:

Table A7. Debug Levels for Debug Descriptor Parameters

Refer to Chapter B 4.5 Driver Debugging on page 124 for further information.

The Debug Settings apply only if you are using the checked version of a driver. See
Chapter B 4 MDIS Device Descriptors on page 112.

Debug Level Hex value Enabled Debug Flags

ErrorsOnly 0xC0008000 INTR, NORM, ERROR

Basic 0xC0008001 INTR, NORM, ERROR, LEV1

Verbose 0xC0008003 INTR, NORM, ERROR, LEV1, LEV2

VeryVerbose 0xC0008007 INTR, NORM, ERROR, LEV1, LEV2, LEV3

!

Building MDIS4 Applications from C Sources

MEN Mikro Elektronik GmbH 60
21M000-13 E2 - 2004-10-20

A 7 Building MDIS4 Applications from C Sources

This chapter describes how to build executables from the provided C source code of
example programs and tools, shipped with the driver packages. This is useful if you
want to use the MEN sources as the starting point for your own C application
development.

You will find the ready-to-use built driver example programs and tools in the
%WORK%\NT\OBJ\EXE\MEN\I386\FREE path of your host system. For test
purposes, just copy the executables to an arbitrary path (e. g. C:\MEN) of the target
system.

No special executables are required for the Windows 2000 PnP drivers, therefore the
executables provided under %WORK%\NT\OBJ\EXE\... can be used for Windows
NT 4.0 as well as Windows 2000 PnP drivers. However, you have to install
men_winspec.dll, which makes executables independent of the driver type. See
Chapter A 8 Writing Applications for MDIS on page 64.

Note: Building Windows drivers and API libraries from the shipped C source code
is no longer supported because all driver packages for Windows come with
ready-to-use built object code (NT4 drivers, W2000 drivers, API libraries).
To build Windows drivers from MDIS4 low-level drivers, you would require
the WinDk library from BSQUARE, a C++ class library used by MEN driv-
ers. Unfortunately, BSQUARE has discontinued WinDk and it is no longer
available. However, if you require an MDIS4 Windows driver for your own
MDIS4 low-level driver, please contact MEN’s support: support@men.de.

Required Compiler

To build MDIS4 example programs or tools (.exe) from MEN’s C sources, you need
Microsoft Visual C++ Professional (4.1 or higher).

You can choose between two build alternatives:

• VC NMAKE — is easy to use and will speed up your work.

• VC IDE — gives you the best overview of your project.

MDIS Example Application

The %WORK%\NT\TOOLS\MDISAPP folder contains a simple example MDIS
application written in C, called MDISAPP, which uses the MDIS-API, USR-OSS
and USR-UTL libraries. The application contains the necessary make and project
files to build the program using NMAKE or from the VC IDE. MDISAPP can also
be used as a template for your own MDIS applications.

The following sections describe the two different build processes.

!

mailto:support@men.de

Building MDIS4 Applications from C Sources

MEN Mikro Elektronik GmbH 61
21M000-13 E2 - 2004-10-20

A 7.1 Using NMAKE

NMAKE ships with the Microsoft VC++ Compiler and must be invoked from the
command line.

NMAKE uses the ..\NMAKE\makefile which includes the operating system-
independent meta make file program*.mak.

For further information about NMAKE refer to the Visual C++ documentation.

To build an MDIS4 application using NMAKE, proceed as follows:

� Open a DOS box.

� Change the path to the folder where the NMAKE\makefile file of the application
resides (e. g. %WORK%\NT\TOOLS\MDISAPP\NMAKE).

� Invoke NMAKE.

By default, NMAKE links the application with the free builds of the static
MDIS API libraries. Optionally, one of four configurations can be specified:

Table A8. Possible Configurations to build an MDIS4 Application using NMAKE

Depending on the chosen configuration, the free or checked version of the
application will be built. The built executable file (e. g. mdisapp.exe) will be stored
in a subfolder, which is named after the configuration (LIB_Release, LIB_Debug,
DLL_Release, DLL_Debug).

Note: You can use nmake [cfg=<configuration>] clean to perform a clean make for
the specified configuration.

%WORK%\NT\TOOLS\MDISAPP\NMAKE>nmake [cfg=<configuration>]

cfg= Meaning

LIB_Release (default) Links with MDIS API libraries – release build

LIB_Debug Links with MDIS API libraries – debug build

DLL_Release Uses MDIS API DLLs – release build

DLL_Debug Uses MDIS API DLLs – debug build

Building MDIS4 Applications from C Sources

MEN Mikro Elektronik GmbH 62
21M000-13 E2 - 2004-10-20

A 7.2 Using VC++ IDE

Visual C++ uses project files (.dsp) to store configuration data such as source files,
input libraries, compiler and linker switches for software modules. The MDISAPP
example application contains the mdisapp.dsp file which can be used as a project
file template for your own MDIS4 applications.

The basic configuration files for VC++ are the so-called workspace files (.dsw). A
workspace file contains links to one or more project files. If you try to open a project
file directly from VC++ and there is no associated workspace file, VC++ will create
a workspace file that contains a link to the project file.

For a detailed description of project files and workspace files see the Visual C++
documentation.

A 7.2.1 Building an Application

To build an MDIS4 application, proceed as follows:

� Start VC++ and open the applications workspace file, e. g. myappl.dsw (or
project file myappl.dsp), located in the applications VC subfolder (e.g.
..\TOOLS\MDISAPP\VC).

� Choose the desired configuration: Build � Set Active Configuration...

Table A9. Possible Configurations to build an MDIS4 Application using VC++ IDE

� Build the application: Build � Rebuild All.
The application executable file, e. g. myappl.exe, will be placed under a sub-
folder of the application’s VC subfolder. The created subfolder will be named
after the chosen configuration (LIB_Release, LIB_Debug, DLL_Release,
DLL_Debug).

Configuration Meaning

Win32 MDIS-LIB Release Links with MDIS API libraries – release build

Win32 MDIS-LIB Debug Links with MDIS API libraries – debug build

Win32 MDIS-DLL Release Uses MDIS API DLLs – release build

Win32 MDIS-DLL Debug Uses MDIS API DLLs – debug build

Building MDIS4 Applications from C Sources

MEN Mikro Elektronik GmbH 63
21M000-13 E2 - 2004-10-20

A 7.2.2 Cloning a Project File

To create a project file for your application, proceed as follows:

� Create a VC subfolder in your application folder (i. e. the folder where the
sources of your application reside).

� Copy the mdisapp.dsp project file from %WORK%\NT\TOOLS\MDISAPP\VC
to your application VC path and rename it to your application’s name, e. g.
myappl.dsp.

� Open the myappl.dsp file using an ASCII editor and replace all mdisapp strings
by the name of your application, e. g. myappl. Use the "Find and Replace"
mechanism of your editor with the "case sensitive" option to do this. Save your
myappl.dsp file.

� Start VC++ and use the File � Open Workspace... dialog to open the
myappl.dsp project file. VC++ will create a workspace file (e. g. myappl.dsw)
for your project under your application VC path and name it just as the project
file.

� Use the FileView of the Workspace window to remove the unused (and not
available) source files. Add your own source files here (context menu � Add
Files to Project).

� If your application requires an additional driver-specific MDIS API library:
Open the Project Settings dialog, select the Link tab (Category: General) and
add the necessary MDIS API library to the Object/library modules line.

� Save the project file (File � Save All).

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 64
21M000-13 E2 - 2004-10-20

A 8 Writing Applications for MDIS

In general, you can access MDIS4 drivers from any programming language that
uses DLLs, because the drivers can be accessed via the MDIS API libraries that are
available in DLL versions. The main programming language for applications
supported by MDIS4 for Windows is C/C++. However, our customers successfully
use a lot of other programming languages to write MDIS4 applications, too.

The men_winspec.dll

The Windows 2000 PnP driver enhancement of MDIS4 for Windows makes it
necessary to install the men_winspec.dll file used by the MDIS-API library (the
static and the DLL version) on the target. This is because Windows 2000 PnP
drivers use interface classes to access a device whereas NT4 drivers use system-
wide device names.

men_winspec.dll was developed to avoid that the MDIS-API library and therefore
all MDIS applications have to be built specifically for each Windows driver type
(NT4/W2K). It encapsulates the device name handling in two different
men_winspec.dll versions. One for all targets running Windows NT 4.0 and one for
all targets running Windows 2000/XP, regardless of the used Windows driver type
(NT4/W2K).

The men_winspec.dll is required if an application program is linked with the
static or using the dynamic (DLL) MDIS-API library version 3.0 or later. The
target OS (NT or W2k/XP) specific men_winspec.dll version must be installed
manually during your MDIS application installation.

Target running Windows NT 4.0

� Copy men_winspec.dll from the %WORK%\NT\OBJ\DLL\MEN\I386\FREE
path of your host system to the %SystemRoot%\System32 system path of the
target system.

Target running Windows 2000/XP

� Copy men_winspec.dll from the %WORK%\W2K\OBJ\DLL\MEN\FRE\I386
path of your host system to the %SystemRoot%\System32 system path of the
target system.

Switches for MEN Header Files

The MEN header files (e.g. men_typs.h) evaluate some switches (defines) (e.g.
WINNT) that must be set before the files are included from the application's sources.
For application development using the MS Visual C++ C/C++ compiler, the
required defines are set by default or in the provided NMAKE makefiles and Visual
C++ project files.

If you intend to use the MEN header files in your own (non Visual C++)
development environment you have to make sure that the required defines are set.
Examine the provided NMAKE makefiles or Visual C++ project files to see which
defines are required.

!

!

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 65
21M000-13 E2 - 2004-10-20

A 8.1 Basics of MDIS API Libraries

• All MDIS API libraries (the static libraries as well as the DLL versions) use the
__stdcall calling convention.

• All MDIS API libraries and MDIS API DLLs use the multithreaded versions
(LIBCMT.LIB, MSVCRT.DLL) of the C runtime library and therefore they are
safe for multithreading.

• All MDIS API DLLs export their functions according to the __stdcall naming
convention (e. g. _UOS_SigInit@4) and the PASCAL naming convention (e. g.
UOS_SIG_INIT). For PASCAL upper-case spelling, XxxYyy are replaced by
XXX_YYY. Chapter A 9.1.6 Examining Dependencies of Executables on page 78
describes how you can get the names of all exported functions.

• MDIS API library functions (e. g. UOS_SigInit of the USR-OSS library) can use
call-back functions that are called by different threads that were created by the
library functions themselves. Therefore the used programming language must
support multithreading (the free threading model) for these MDIS API library
functions.

• If your applications will use the DLL versions of the MDIS API libraries
(men_mdis_api.dll, men_usr_oss.dll, men_usr_utl.dll, etc.) you must copy the
required DLLs from the %WORK%\NT\OBJ\DLL\MEN\I386\FREE path of your
host system to the %SystemRoot%\System32 system path of the target system or
to the path where your application executable resides.

The following sections give you some hints on writing MDIS4 applications for C/
C++ (especially Visual C++), Visual Basic, Delphi and National's Measurement
Studio.

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 66
21M000-13 E2 - 2004-10-20

A 8.2 C/C++ Specifics

There are two possibilities for a C/C++ application to call the MDIS API library
functions:

• Via the MDIS API libraries (*.lib), linked statically to the application.

• Via the MDIS API DLLs (men_*.dll), used at runtime.

If you intend to use the static MDIS-API library (mdis_api.lib), you have to link
your C/C++ application with the men_winspec.lib import library (located under
%WORK%\NT\OBJ\DLL\MEN\I386\FREE) that belongs to the men_winspec.dll
(NT4 and W2K version). See Chapter The men_winspec.dll on page 64 for further
information about men_winspec.lib.

A 8.2.1 Using Static MDIS API Libraries

You must link your C/C++ application with the static MDIS API libraries that you
want to use (at least mdis_api.lib).

The static MDIS API libraries are located under %WORK%\NT\OBJ\LIB\MEN\
I386\FREE(CHECKED).

A 8.2.1.1 C Runtime Library (CRT) – Multithreading

Since the libraries use functions of the CRT and the static MDIS API libraries must
be safe for multithreading, it is necessary that you use one of the multithreaded
CRTs (LIBCMT.LIB or MSVCRT.DLL) to build your application.

Do not use the non-multithreaded CRT LIBC.LIB, which is linked by default
by Visual C++.

A 8.2.1.2 Calling Convention

Since the static MDIS API libraries were built using the __stdcall calling
convention, a program that will be linked with these libraries must call all MDIS
API functions also using the __stdcall calling convention.

All MDIS API declarations in header files newer than 07/17/00 (e. g. mdis_api.h,
usr_oss.h, usr_utl.h) specify the __stdcall calling convention explicitly if define
WINNT is set as a compiler option for the source files which include the MDIS API
header files. In this case, the compiler’s common calling convention does not matter.
However, for a few older MDIS API header files, it is necessary to use the __stdcall
calling convention as a common compiler option.

!

!

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 67
21M000-13 E2 - 2004-10-20

A 8.2.2 Using MDIS API DLLs

For each men_*.dll, there is a corresponding men_*.lib import library, which can be
used for C/C++ programs. Don’t confuse the men_*.lib import libraries for the *.lib
static libraries.

The import libraries are located under %WORK%\NT\OBJ\DLL\MEN\I386\
FREE(CHECKED).

You can link your C/C++ application with the import libraries (e. g.
men_mdis_api.lib), which belongs to the MDIS API DLLs (e. g. men_mdis_api.dll)
you want to use at runtime.

A 8.2.2.3 C Runtime Library (CRT) – Multithreading

Since the libraries use functions of the CRT and must be designed for multithreaded
operation, it is necessary that you use the multithreaded CRT MSVCRT.DLL to link
your application, because the MDIS API DLLs also use this CRT.

Do not use LIBC.LIB or LIBCMT.LIB.

A 8.2.2.4 Calling Convention

Since the MDIS API DLLs were built using the __stdcall calling convention, a
program that wants to use the functions exported from the DLLs must call all MDIS
API functions also using the __stdcall calling convention.

A 8.2.3 Visual C++ Notes

• The default calling convention in Visual C++ is __cdecl.

• If the proper calling convention is not set (see Chapter A 8.2.1.2 Calling Con-
vention on page 66) or the library which contains the appropriate function was
not found (see Chapter A 8.2.1.1 C Runtime Library (CRT) – Multithreading on
page 66), Visual C++ stops with the following error message:

• To change the calling convention select Project � Settings � C/C++ Tab,
choose category Code Generation and select the desired calling convention (e. g.
__stdcall).

• To choose the CRT select Project � Settings � C/C++ Tab, choose category
Code Generation and select the desired runtime library (e. g. Multithreaded
DLL).

xxx.obj : error LNK2001: unresolved external symbol _YYY

!

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 68
21M000-13 E2 - 2004-10-20

A 8.3 Visual Basic Specifics

VB applications must use the MDIS API-DLLs (men_*.dll) to access MDIS4
drivers.

A 8.3.1 VB Declaration Files

In general, MEN only provides include files (.h) for C/C++ programs, which contain
prototypes of functions and other defines. However, the MDIS4 for Windows
System Package contains VB declaration files (.bas) for the following MDIS4
software modules:

Table A10. VB Declaration Files included in MDIS4 Windows NT System Package

Note: A few functions of the MDIS API libraries cannot be used under VB. Refer to
the corresponding .bas files for further details.

All VB declaration files are located in folder %WORK%\NT\INCLUDE\NATIVE\MEN.

If you need other declarations, e. g. for a special MDIS4 device driver, it is up to you
to write the needed VB declaration file. The supplied xxx.h and corresponding
xxx.bas files give you some guidance on how to convert a C/C++ include file into a
VB declaration file.

On the web (www.programmersheaven.com), we have found a public domain
program called VB Declaration Converter that reads WIN32 SDK header files and
converts C prototypes to VB declarations. Although it does not work well with our
include files, it may help you to build your VB declaration files.

A 8.3.2 Multithreading

Currently, VB does not support the free threading model. Therefore it is not safe to
use MDIS API functions that use a different thread to call functions which reside in
your VB application (callback functions). Currently, only the UOS_SigInit function
of the USR-OSS library uses these techniques.

Note on Function UOS_SigInit

Instead of installing a signal handler (callback function) using the UOS_SigInit
function, use the UOS_SigWait function to wait for signals. However, you can write
your own signal handler thread that uses UOS_SigWait to notify your application
about signals.

VB Declaration File Corresponding Software Module

mdis_api.bas MDIS-API DLL (men_mdis_api.dll)

usr_oss.bas USR-OSS DLL (men_usr_oss.dll)

usr_utl.bas USR-UTL DLL (men_usr_utl.dll)

mt_drv.bas MT Test Device Driver (men_mt.sys)

!

http://www.programmersheaven.com

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 69
21M000-13 E2 - 2004-10-20

A 8.3.3 MAPIVB – VB Example MDIS4 Application

MAPIVB is a VB test and example program for MDIS4. It demonstrates the usage of
MDIS API DLLs and MDIS drivers with Visual Basic. MAPIVB comes with
sources to give you an extensive example of how MDIS drivers can be accessed
from VB applications. MAPIVB is located under %WORK%\NT\VB\MAPIVB.
There is also a redme.txt file with further details.

A 8.4 Delphi Specifics

Delphi applications must use the MDIS API DLLs (men_*.dll) to access MDIS4
drivers.

A 8.4.1 Delphi Import Units

In general, MEN only provides include files (.h) for C/C++ programs which contain
prototypes of functions and other defines. You can use these to create Delphi Import
Units (.pas) necessary for Delphi.

To convert our include files into Delphi Import Units, we recommend to use
Dr.Bob's DLL Header Converter Program, HeadConv v4.00, a command-line utility.
HeadConv is freeware (Delphi Jedi Project) and can be found on the web together
with a user guide ("Using C DLLs with Delphi (and HeadConv)") at
www.drbob42.com/tools/index.htm.

http://www.drbob42.com/tools/index.htm

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 70
21M000-13 E2 - 2004-10-20

A 8.5 Measurement Studio

A 8.5.1 General

MDIS4 System Package for Windows NT/2000/XP/Embedded (article no. 13M000-
06) is required, and the recommended device drivers for the board (e.g. M-Module
carrier) and device (e.g. M-Module) must be installed in your system.

A 8.5.2 Customizing Your Project

A 8.5.2.5 MDIS4 API Libraries

Don't use MDIS4 static libraries, use the MDIS4 dynamic link libraries (DLLs)
only.

For each dynamic linc library men_*.dll, there is a corresponding men_*.lib import
library which can be used. Don't confuse the men_*.lib import libraries with the
*.lib static libraries.

You can link your application with the import libraries (e.g. men_mdis_api.lib),
which belong to the MDIS API DLLs (e.g. men_mdis_api.dll) that you want to use
at runtime.

The following figure shows an example of a project configured to use the MDIS4
DLLs.

Figure A2. Editing the Project

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 71
21M000-13 E2 - 2004-10-20

A 8.5.2.6 Include Paths for MDIS4 Header Files

Set the include paths to MEN's common and native header files:
(e.g. D:\WORK \NT\INCLUDE\COM and D:\WORK \NT\INCLUDE\NATIVE)

Figure A3. Include Paths

A 8.5.2.7 Defines

Add defines WINNT and _LITTLE_ENDIAN_.

Figure A4. Setting the Defines

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 72
21M000-13 E2 - 2004-10-20

A 8.5.3 Writing Code with MDIS4

A 8.5.3.8 Starting Code Generation

After customizing the user interface editor window (*.uir file) and generating the
code frame, you must add the MDIS4 code for accessing the device hardware.

A 8.5.3.9 Main Function

In the main function of your source code you open the path to the device and make
the device's (e.g. M-Module's) default configurations.

Note: Additional MDIS code is printed in bold type: /* MDIS code */
path is a global variable.

int main (int argc, char *argv[])
{
 if (InitCVIRTE (0, argv, 0) == 0)
 return -1; /* out of memory */
 if ((panelHandle = LoadPanel (0, "m68.uir", PANEL)) < 0)
 return -1;
 /*--------------------+
 | open path |
 +--------------------*/
 /* open the device */
 if ((path = M_open("/m68_1")) < 0) {
 /* error handling */
 ...
 }
 /*--------------------+
 | config |
 +--------------------*/
 /* set current channel */
 if ((M_setstat(path, M_MK_CH_CURRENT, chan)) < 0) {
 /* error handling */
 ...
 }
 ...
 DisplayPanel (panelHandle);
 RunUserInterface ();
 DiscardPanel (panelHandle);
 if (M_close(path) < 0) {
 /* error handling */
 ...
 }
 return 0;
}

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 73
21M000-13 E2 - 2004-10-20

A 8.5.3.10Callback Functions

In a callback function the application can do additional hardware access, depending
on what is recommended to the event.

Note: Additional MDIS code is printed in bold type: /* MDIS code */
path is a global variable.

int CVICALLBACK refM (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
{
 switch (event)
 {
 case EVENT_xxx:
 /* Additional MDIS code to communicate with the M-Module */
 /* (e. g. M_read, M_write, M_getstat, ...) */
 ...
 break;
 }
 return 0;
}

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 74
21M000-13 E2 - 2004-10-20

A 8.6 MDISNT Test and Configuration Utility

The MDISNT program is a test and configuration utility for Windows that was
original written by MEN for internal usage in the MDIS development and test
process. Therefore, some MDISNT commands deal with MDIS internals, which are
not fully documented. However, MEN supplies MDISNT because it is also useful for
your own application development and test purposes.

You can use the utility to quickly test any driver function, determine the capability
of a driver, get revision information of all software modules used by the driver, and
much more.

MDISNT highlights:

• Test all MDIS-API library functions (M_xxx)

• Test the signal functions (UOS_SigXxx) of the USR-OSS library

• Test some MK, low-level driver and BBIS functions

• Multithread support (up to 10 threads can be used)

• Up to 10 device paths can be opened from each thread created

• Block buffer with byte, word or dword alignment used by M_getblock,
M_setblock and block Get/SetStat calls.

To benefit your development process, MDISNT ships with C sources
(%WORK%\NT\TOOLS\MDISNT). However, you cannot build MDISNT from the
delivered sources on your own, since some required MDIS-internal header files are
not included.

A 8.6.1 Using MDISNT

The MDISNT executables are located in the executable path
(%WORK%\NT\OBJ\EXE\MEN\I386\FREE) of your host system.

There are two different versions of the tool:

• mdisnt.exe (linked statically with the MDIS API libraries)

• mdisntdll.exe (uses the DLL versions of the MDIS API libraries)

Copy the executables to an arbitrary path of the target system (e. g. C:\MEN\).

Note: If you want to use mdisntdll.exe the following DLLs must be present in the
\WINNT\system32 folder of your target system: men_mdis_api.dll,
men_usr_oss.dll, men_usr_utl.dll. However, the men_winspec.dll is always
required (for mdisnt.exe and mdisntdll.exe).

If you run the MDISNT tool (mdisnt.exe or mdisntdll.exe) from the command
prompt, you will see an overview of the available commands. This command table
can always be displayed via the -h (HELP) command.

Writing Applications for MDIS

MEN Mikro Elektronik GmbH 75
21M000-13 E2 - 2004-10-20

MDISNT Output on Start-up

 mdisnt : Test and Configuration Utility for MDIS/NT

 (c) 1999 by MEN mikro elektronik GmbH, V 1.3 2000/11/07
==

Commands
========
 -h : HELP -e : EXIT thread/proc
 -tc : Create thread -ts : Suspend thread
 -ps : Select path
_____MDIS-API_____
 -mo : M_open -mc : M_close
 -mg : M_getstat blk:(*) -ms : M_setstat blk:(*)
 -mr : M_read -mw : M_write
 -mgb : M_getblock (*) -msb : M_setblock (*)
 -merr : M_errstring (*) uses blk-buffer
_____USR_OSS_____
 -si : UOS_SigInit -se : UOS_SigExit
 -sin : UOS_SigInstall -sre : UOS_SigRemove
 -sm : UOS_SigMask -sum : UOS_SigUnMask
 -sw : UOS_SigWait -uerr : UOS_ErrString
_____MK_____
 -rev : get rev strings
 -addr : get address info -irq : get irq info
 -dev : get device info -brd : get board info
 -path : get path info -misc : get misc info
 -dsemw : wait for dev-sem -dsemr : release dev-sem
 -iod : IOCTL for delay
_____LL-DRV_____
 -lldrv : ll-drv info -devid : device id-prom
_____BBIS_____
 -bbis : bbis info -brdid : board id-prom
_____SERVICES_____
 -dbg : set/get debug level
 -bbalgn : align blk-buf -bbshow : show blk-buffer
 -bbset : set blk-buffer -bbfill : fill blk-buffer
_____NT_____
 -pid : get process id -sev : set event

Thr:1/1 (MAIN tid:0x5d) / Dev:<none> (path:-) ==> cmd: -

Solving Problems

MEN Mikro Elektronik GmbH 76
21M000-13 E2 - 2004-10-20

A 9 Solving Problems

This chapter gives you some information on how to solve problems with MDIS4
software modules. The first part shows you how to gather important information for
error debugging. The second part lists typical problems and the proposed solutions.

A 9.1 Gathering Information

Under Windows 2000/XP, the Computer Management is the central console with a
collection of administrative tools. To open Computer Management:

� Right-click on the My Computer desktop icon and select Manage.

Or

� W2k:
Go to Start � Settings � Control Panel � Administrative Tools � Computer Management.

� XP:
Go to Start � All Programs � Administrative Tools � Computer Management.

A 9.1.1 Viewing Event-Log Entries

MEN’s drivers use the Windows event-logging service to enter detailed error
messages and other information into the Windows event log. The messages can be
viewed using the Windows Event Viewer, accessible from Start � Programs �
Administrative Tools � EventViewer (NT4) or from Computer Management �
Event Viewer � System (W2k/XP).

Note: To get the MEN-specific descriptions for the event entries logged by the
MDIS drivers, the men_evlg.dll file must be present in the %System-
Root%\System32 system path of the target system.

A 9.1.2 Displaying the Used Driver Parameters (NT4)

You can examine and modify the driver parameters under NT4 using one of the
registry editors (regedit or regedt32). You will find the driver parameters under the
key

where XXX is the driver name (e. g. men_d201).

HKEY_LOCAL_MACHINE\HARDWARE\SYSTEM\CurrentControlSet\Services\XXX

Solving Problems

MEN Mikro Elektronik GmbH 77
21M000-13 E2 - 2004-10-20

A 9.1.3 Displaying the Used Resources

To display the resources used by MEN drivers (e. g. interrupts, memory), proceed as
follows:

Windows NT 4.0 Drivers under NT4

� Open the Windows NT Diagnostics and select the register resources.
(Start � Programs � AdministrativeTools � Windows NTDiagnostics)

� You can see the devices created from the drivers by selecting Devices. To view
the resources assigned to a certain device, just double-click on the device.

� To view all resources of one category, select this category (e. g. IRQ).

Windows 2000 PnP Drivers under W2k/XP

Use the Resource tab of the device’s property page to view the assigned resources.
For further details, refer to Chapter A 6.1 W2k Device Parameters on page 53.

Windows NT 4.0 Drivers under W2k/XP

If you use Windows NT 4.0 drivers under W2k/XP, you can see the NT4 drivers in
the Device Manager's "Non-Plug and Play Drivers" tree if the option "Show hidden
devices" is selected.

Windows may report some resource conflicts in the device manager. This is because
the Windows NT 4.0 drivers notify the required resources for a device to Windows
2000/XP but the OS itself assigns the resources to PnP devices. Now, if an NT4
driver serves a PnP device, Windows will report resource conflicts for the NT4
driver and the PnP device. However, in this case, just ignore the reported resource
conflicts.

A 9.1.4 Getting Revision Information on MDIS Modules

You can use MDISNT on the target system to get revision information of all software
modules used by the driver:

� Start mdisnt.exe in a DOS box of the target system.

� Open a handle to a device of the device driver (command: -mo, device name:
<dev>).

� Get the revision strings of the software modules used by the board driver and
device driver (command -rev).

� Exit MDISNT (command: -e).

For further information on MDISNT refer to Chapter A 8.6 MDISNT Test and
Configuration Utility on page 74.

Solving Problems

MEN Mikro Elektronik GmbH 78
21M000-13 E2 - 2004-10-20

A 9.1.5 Getting .sys/.dll File Information

You can get file information for drivers (.sys) or DLLs (.dll) via context menu item
Properties of the desired file in your Windows Explorer.

The file information may include:

• File version, e.g. 1.2.0.0

• File description, e.g. Windows 2000 PnP Driver (checked build)

• File comments, e.g. MDIS4 Device Driver

• Original file name, e.g. men_p13.sys

• Product name, e.g. 13P013-70

• Product version, e.g. 1.3.0.0

A 9.1.6 Examining Dependencies of Executables

Use Steve P. Miller's Dependency Walker to scan any exe, dll, or sys module and get
a hierarchical tree diagram of all dependent modules. For each module found,
Dependency Walker lists all the functions that are exported by that module, and
which of those functions are actually being called by other modules. It is also very
useful for troubleshooting system errors related to loading and executing modules.

Dependency Walker is a free utility that is included in some MS products (e.g.
Visual Studio) and can be downloaded from some web servers (e.g.
www.dependencywalker.com).

A 9.1.7 Viewing the PCI Configuration Space

Use a PCI exploration tool to list all PCI devices in your system and to get the PCI
Configuration Space parameters of each device. We recommend PCIScope from
APSoft, a powerful tool designed to explore, examine and debug PCI subsystems of
your computer. The option to save PCI subsystem information to a file is useful for
exploring, comparing and debugging remote machines (e.g. for MEN support). For
further information and to get a trial version refer to www.tssc.de.

A 9.1.8 Displaying Debug Output from Checked Modules

The checked builds of MDIS4 software modules provide debug outputs, which give
you information about the currently working function, errors, warnings and some
function-specific information. See Chapter B 4.5 Driver Debugging on page 124 for
a detailed description.

Under Windows, you can display the debug output using a debugger (e. g. SoftICE,
WinDbg) or with one of the following free debug monitoring programs:

• Debug Monitor from www.osr.com

• DebugView from www.sysinternals.com

http://www.dependencywalker.com
http://www.tssc.de
http://www.osr.com
http://www.sysinternals.com

Solving Problems

MEN Mikro Elektronik GmbH 79
21M000-13 E2 - 2004-10-20

A 9.2 Problems and Solutions

A 9.2.1 NT4 Driver Does Not Start

If a device driver or board driver cannot be started, please check the following items:

� Is the driver descriptor successfully inserted into the registry?
(See Chapter A 5.4 NT4 Driver Descriptor Files on page 41.)

� Are the driver parameters in the registry (BOARD_NAME, DEVICE_SLOT,
PCI_BUS_PATH, etc.) properly adapted to the system configuration?
(See Chapter A 5.4 NT4 Driver Descriptor Files on page 41.)

� Did you reboot the target system after driver installation?
(See Chapter A 4.3 Installing Windows NT 4.0 Drivers on page 22.)

� Are the driver .sys files located under %SystemRoot%\System32\Drivers?

� Are all other drivers that will be used by the driver started?
Remember, a device driver needs at least one board driver.
(See Chapter A 1.5 How MDIS4 Maps into the Windows NT Architecture on
page 10.)

� If the driver's descriptor parameters were cloned from another target system,
verify that the Enum subkey under the driver’s entry in the registry was not cop-
ied by mistake. Otherwise, delete the Enum key manually using a registry edi-
tor. (See Chapter Subkey Enum on page 40).

� Is the hardware (boards/devices) that will be handled by the driver properly
installed (plugged) in the system?
Some hardware modules need an external voltage supply or further hardware
adapters.

� Does the driver match the installed hardware?
Some drivers come with various driver versions (swapped version, version for I/
O address space).

� Check the Windows event log to get further details why the driver was not
started.
(See Chapter A 9.1.1 Viewing Event-Log Entries on page 76.)

� Consult the user manual for the driver and the user manual for the hardware for
further driver-specific requirements.

A 9.2.2 NT4 Driver Does Not Stop

If a device driver or board driver cannot be stopped, please check the following:

� Are all handles from superior drivers as well as paths from applications that
refer to the driver closed?
(See Chapter A 5.1 Starting and Stopping NT4 Drivers on page 36.)

Solving Problems

MEN Mikro Elektronik GmbH 80
21M000-13 E2 - 2004-10-20

A 9.2.3 Device Driver Does Not Work

If a device driver does not work properly, please check the following items:

� Make sure that the driver was started successfully. You can get information
about the driver start from the Windows event log.
(See Chapter A 9.1.1 Viewing Event-Log Entries on page 76.)

� NT4 driver: Are the driver-specific descriptor parameters in the registry prop-
erly adapted to the system configuration?
(See Chapter A 5.4 NT4 Driver Descriptor Files on page 41.)

� Is the hardware (boards/devices) that will be handled by the driver, properly
installed (plugged) in the system?
Some hardware modules need an external voltage supply or further hardware
adapters.

� Does the driver match the installed hardware?
Some drivers come with various driver versions (swapped version, version for I/
O address space).

� Consult the user manual for the driver and the user manual for the hardware for
further driver-specific requirements.

A 9.2.4 Strings of Event-log Entries are Missing

� Check if the men_evlg.dll file resides in the %SystemRoot%\System32 folder of
your target system.
(See Chapter A 4 Installing the Target System on page 18.)

� NT4 driver: Check if all drivers are successfully added under the EventLog entry
in the registry.
(See Chapter A 5.4.2.5 Device and Board Driver Keys on page 46.)

A 9.2.5 W2k Device Cannot be Opened

If an MDIS application cannot open a device (e.g. m66_1) created by a Windows
2000 PnP driver:

� Check that the MDIS application was linked with the static or using the
dynamic (DLL) MDIS-API library version 3.0 or later. See Chapter A 8 Writ-
ing Applications for MDIS on page 64 for further details.

A 9.2.6 Cannot Link C/C++ Application with Static MDIS API
Libraries

Make sure that the application calls all MDIS API functions using the __stdcall
calling convention, because the MDIS API libraries were built using this calling
convention (see Chapter A 8.2.1 Using Static MDIS API Libraries on page 66).

Performance

MEN Mikro Elektronik GmbH 81
21M000-13 E2 - 2004-10-20

A 10 Performance

The programs used for performance measurement are statically linked with the
MDIS-API library. If an application uses the DLL version of the MDIS-API library
(men_mdis_api.dll), the duration time of an MDIS-API call may be about 5 to 15%
longer than a call with the static MDIS-API library.

A 10.1 MDIS-API Calls without Hardware Access

The following measurements show the performance of MDIS4 for Windows
without any hardware access. The measured times are the duration from the point
when an application calls an MDIS-API function until the point when the called
function returns.

Note: The measured times are based on the resolution of the Windows high-resolu-
tion performance counter (approx. 0.84µs).

A 10.1.1 NT4 Drivers on 200MHz D1 CPU

System Configuration

• CPU board: D1 200MHz MMX, 96 MB RAM

• Carrier board: D201

• M-Module: None

• Operating system: Windows NT 4.0 US, SP 5

• NT4 board driver: men_d201.sys (rev. 1.7)

• NT4 device driver: men_mt.sys (rev. 1.1)

• Test program: mt_bench.exe (rev. 1.1)

• MDIS-APIlibrary: mdis_api.lib (rev. 1.7)

Performance

MEN Mikro Elektronik GmbH 82
21M000-13 E2 - 2004-10-20

Test Results

A 10.1.2 NT4/W2k Drivers on 1.2GHz F7N CPU

System Configuration

• CPU board: F7N 1.2GHz Celeron, 256MB RAM

• Carrier board: F201

• M-Module: None

• Operating system: Windows 2000 Professional US

• NT4/W2k board driver: men_f201.sys (rev. 2.4)

• NT4/W2k device driver: men_mt.sys (rev. 1.1)

• Test program: mt_bench.exe (rev. 1.2)

• MDIS-APIlibrary: mdis_api.lib (rev. 3.0)

mt_bench pathcount=1000 callcount=10000 devicename=mt_1

Initial OPEN : 1 calls 100036.709 total usec
 100036.709 usec/call
Further OPENs : 1000 calls 129791.599 total usec
 129.792 usec/call
GETSTAT : 10000 calls 241047.887 total usec
 24.105 usec/call
SETSTAT : 10000 calls 264338.550 total usec
 26.434 usec/call
READ : 10000 calls 233013.069 total usec
 23.301 usec/call
WRITE : 10000 calls 232022.441 total usec
 23.202 usec/call
GETBLOCK : 10000 calls 222136.271 total usec
 22.214 usec/call
SETBLOCK : 10000 calls 193579.856 total usec
 19.358 usec/call
Further CLOSES's : 1000 calls 21220.568 total usec
 21.221 usec/call
Terminating CLOSE : 1 calls 173.486 total usec
 173.486 usec/call

Performance

MEN Mikro Elektronik GmbH 83
21M000-13 E2 - 2004-10-20

Test Results with NT4 Drivers

Test Results with W2k Drivers

mt_bench pathcount=1000 callcount=10000 devicename=mt_1

Initial OPEN : 1 calls 94490.195 total usec
 94490.195 usec/call
Further OPEN's : 1000 calls 530639.919 total usec
 530.640 usec/call
GETSTAT : 10000 calls 43092.336 total usec
 4.309 usec/call
SETSTAT : 10000 calls 43535.689 total usec
 4.354 usec/call
READ : 10000 calls 39935.232 total usec
 3.994 usec/call
WRITE : 10000 calls 40439.765 total usec
 4.044 usec/call
GETBLOCK : 10000 calls 32728.452 total usec
 3.273 usec/call
SETBLOCK : 10000 calls 32435.957 total usec
 3.244 usec/call
Further CLOSES's : 1000 calls 4359.771 total usec
 4.360 usec/call
Terminating CLOSE : 1 calls 50.286 total usec
 50.286 usec/call

mt_bench pathcount=1000 callcount=10000 devicename=mt_1

Initial OPEN : 1 calls 98705.814 total usec
 98705.814 usec/call
Further OPEN's : 1000 calls 1523133.101 total usec
 1523.133 usec/call
GETSTAT : 10000 calls 45541.250 total usec
 4.554 usec/call
SETSTAT : 10000 calls 46420.412 total usec
 4.642 usec/call
READ : 10000 calls 43275.041 total usec
 4.328 usec/call
WRITE : 10000 calls 43260.793 total usec
 4.326 usec/call
GETBLOCK : 10000 calls 36218.280 total usec
 3.622 usec/call
SETBLOCK : 10000 calls 36494.852 total usec
 3.649 usec/call
Further CLOSES's : 1000 calls 5147.580 total usec
 5.148 usec/call
Terminating CLOSE : 1 calls 158.400 total usec
 158.400 usec/call

Performance

MEN Mikro Elektronik GmbH 84
21M000-13 E2 - 2004-10-20

A 10.2 MDIS-API Calls with Hardware Access

This measurements show the performance of MDIS4 for Windows with hardware
access to an M66 M-Module. The measured times are the duration from the point
when an application calls an MDIS-API function until the point when the called
function returns.

Note: The measured times are based on the resolution of the Windows system timer
(10ms).

A 10.2.1 NT4 Drivers on 200MHz D1 CPU

System Configuration

• CPU board: D1 200MHz MMX, 96 MB RAM

• Carrier board: D201

• M-Module: M66

• Operating system: Windows NT 4.0 US, SP 5

• NT4 board driver: men_d201.sys (rev. 1.7)

• NT4 device driver: men_m66.sys (rev. 1.3)

• test program: m66_perf.exe (rev. 1.1)

• MDIS-APIlibrary: mdis_api.lib (rev. 1.7)

Test Results

m66_perf callcount=10000 verbose=no
M_write:
 10000 calls: 370msec => 37.000usec / call
M_read:
 10000 calls: 361msec => 36.100usec / call
M_setblock:
 10000 calls: 851msec => 85.100usec / call
M_getblock
 10000 calls: 1302msec => 130.200usec / call

Performance

MEN Mikro Elektronik GmbH 85
21M000-13 E2 - 2004-10-20

A 10.2.2 NT4/W2k Drivers on 1.2GHz F7N CPU

System Configuration

• CPU board: F7N 1.2GHz Celeron, 256MB RAM

• Carrier board: F201

• M-Module: M66

• Operating system: Windows 2000 Professional US

• NT4/W2k board driver: men_f201.sys (rev. 2.4)

• NT4/W2k device driver: men_m66.sys (rev. 1.5)

• Test program: m66_perf.exe (rev. 1.2)

• MDIS-API library: mdis_api.lib (rev. 3.0)

Test Results with NT4 Drivers

Test Results with W2k Drivers

m66_perf callcount=10000 verbose=no

M_write:
 10000 calls: 50msec => 5.000usec / call
M_read:
 10000 calls: 50msec => 5.000usec / call
M_setblock:
 10000 calls: 721msec => 72.100usec / call
M_getblock
 10000 calls: 1172msec => 117.200usec / call

M_write:
 10000 calls: 61msec => 6.100usec / call
M_read:
 10000 calls: 60msec => 6.000usec / call
M_setblock:
 10000 calls: 711msec => 71.100usec / call
M_getblock
 10000 calls: 1201msec => 120.100usec / call

Development Tools and Resources

MEN Mikro Elektronik GmbH 86
21M000-13 E2 - 2004-10-20

A 11 Development Tools and Resources

A 11.1 Development Tools

Visual C++ Professional Edition

High-performance development environment for 32-bit Windows C/C++
applications and drivers. Contains C++ Compiler/Linker for IX86 platforms and
further tools.

Manufacturer: Microsoft, www.microsoft.com

MSDN Professional Subscription

MSDN Subscriptions is a membership service which delivers essential
programming information, the latest Microsoft software and tools, each month, on
CD-ROM or DVD-ROM, by choice. MSDN subscribers also receive updates,
service packs, selected betas, and new releases shipped throughout the year.

The Professional Subscription contains among others:

• The MSDN Library, an essential reference for developers, with more than a
gigabyte of technical programming information, including sample code, docu-
mentation, technical articles and the Microsoft Developer Knowledge Base.
The MSDN Library is also accessible from the web (see Chapter A 11.3
Resources on the Web on page 87).

• The Visual C++ Professional Edition

• Platform Software Development Kit (SDK)

• Device Driver Kit (DDK)

Manufacturer: Microsoft, www.microsoft.com

http://www.microsoft.com
http://www.microsoft.com

Development Tools and Resources

MEN Mikro Elektronik GmbH 87
21M000-13 E2 - 2004-10-20

A 11.2 Literature

• Art Baker; The Windows NT Device Driver Book; Prentice Hall;
ISBN 0-13-184474-1

• Peter G. Viscarola & W. Anthony Mason; Windows NT Device Driver Develop-
ment; MTP; ISBN 1-57870-058-2

• Edward N. Decker & Joseph M. Newcomer; Developing Windows NT Device
Drivers; Addison-Wesley; ISBN 0-201-69590-1

• David A. Solomon, Mark E. Russinovich; Inside Windows 2000 Third Edition;
Microsoft Press; ISBN 0-7356-1021-5

A 11.3 Resources on the Web

• www.asktheoracle.com/driver
Device Driver Resource Page — A reference page for programmers developing
device drivers for Microsoft Windows NT/2000/XP.
It contains links to specifications, documentation and software that are useful in
developing device drivers.

• www.osr.com
The website of Open Systems Resources, Inc. (OSR), a company specialized for
the Windows NT/2000/XP system internals.
You will find various resources (technical articles as well as tools) related to the
Windows NT/2000/XP internals on this site.

• www.sysinternals.com
The Sysinternals website provides advanced utilities, technical information and
source code related to Windows internals.

• www.microsoft.com/hwdev
The Windows Driver and Hardware Development site provides tools, informa-
tion, and services for driver developers and hardware designers who create prod-
ucts that work with one of the Microsoft Windows operating systems.

• www.msdn.microsoft.com
The Microsoft MSDN online website with essential resources for developers.
From there, you have access to the MSDN Library that contains a bounty of tech-
nical programming information, including sample code, documentation, techni-
cal articles, and reference guides.

http://www.asktheoracle.com/driver
http://www.osr.com
http://www.sysinternals.com
http://www.microsoft.com/hwdev
http://www.msdn.microsoft.com

MBUF Device I/O

MEN Mikro Elektronik GmbH 88
21M000-13 E2 - 2004-10-20

Part B Common MDIS Reference

B 1 MBUF Device I/O

B 1.1 Channels

Each device is logically divided into several channels. Every channel I/O access via
M_read() and M_write() and some of the status calls refer to the current channel.

You can obtain the total number of device channels using GetStat call
M_MK_LL_CH_NUMBER.

B 1.2 Channel I/O

The functions M_read() and M_write() can be used to read from the current channel
of a device or to write a value to it.

B 1.2.1 Channel I/O Modes

The M_MK_IO_MODE status code is used to define/query the mode in which all
channel I/O to the device is executed. This only affects functions M_read() and
M_write().

Table B1. Channel I/O Modes

In M_IO_EXEC mode, I/O is directly done to the current channel of the device.

M_IO_EXEC_INC mode is the same as M_IO_EXEC but with subsequent
incrementation of the current channel.

B 1.2.2 Channel Direction

Each I/O channel has a specific I/O direction as

• input channel

• output channel

• input/output channel.

The I/O direction may be fixed or changeable depending on the hardware and the
device driver implementation. If the direction is changeable, you can use the
M_LL_CH_DIR SetStat call to change it. If it is not, an error is returned. The current
channels direction can always be queried with the M_LL_CH_DIR GetStat call.

Each access using M_read() or M_write() is checked for I/O direction and an error is
returned if the direction is illegal.

I/O Mode Description

M_IO_EXEC I/O without increment1

1 Default mode

M_IO_EXEC_INC I/O with auto-increment

MBUF Device I/O

MEN Mikro Elektronik GmbH 89
21M000-13 E2 - 2004-10-20

B 1.3 Block I/O

To read or write blocks of data to the device or to the I/O buffers, you must use
functions M_getblock() and M_setblock(). Depending on the device driver
implementation, block I/O may be used to

• read/write a block of data directly from/to the hardware

• read/write a block of data from/to a device driver’s buffer.

Both block I/O functions return the count of bytes transferred. If the block size
requested by the application is too small, the function returns an error.

The following chapter describes the handling of device driver buffers. If the driver
supports only hardware access, the described functionality is not available.

B 1.3.1 Driver Buffers

Driver buffers are allocated and controlled by the device driver. Depending on the
device driver implementation a buffer may contain data for a single channel or for
multiple channels. At most each channel may have its own input and/or output
buffer.

Figure B1. Buffer Structure

The buffer size may be specified in the device descriptor. Otherwise a default size is
used. The driver rounds-down the specified size if needed.

Each buffer has a specific buffer width which describes the minimum amount of
data bytes that can be read from or written into the buffer. This can be seen as the
size of one "entry" in the buffer.

The buffer counter reports the amount of available data bytes in input buffers and
the free space in output buffers.

The buffer counter is updated each time an application or the interrupt service
routine read data from or write data into the buffer. Handling of the counter depends
on the selected block I/O mode and is described with the corresponding buffer
mode.

!

width [bytes]

si
ze

 [b
yt

es
]

0 1 2 3

4 5 6 7

size-4 size-3 size-2 size-1

entry 0

entry 1

entry (size/width)-1

MBUF Device I/O

MEN Mikro Elektronik GmbH 90
21M000-13 E2 - 2004-10-20

Buffer size, width and counter can be queried through GetStat calls.

The buffer can be reset (logically cleared) and for debug purposes also filled with
zero (physically cleared) using SetStat calls.

For ring buffers further parameters can be set or queried as described with the
corresponding buffer mode:

• Overflow/underrun error handling

• Read/write timeout

• High/lowwater marks

• Input buffer high/lowwater signal

• Output buffer high/lowwater signal

The structure of a buffer and the available block I/O modes always depend on the
device driver implementation. It is described in the respective device driver user
manual.

B 1.3.2 Block I/O Modes

For all block I/O done with the M_getblock() and M_setblock() functions the
selected block I/O mode defines the action to be performed and the type of buffer to
be used.

The block I/O mode can be selected

• via the M_BUF_RD_MODE SetStat call for each input buffer and

• via the M_BUF_WR_MODE SetStat call for each output buffer.

If the driver does not support the specified block mode, it will return an error.

If separate buffers are available for more than one channel, the above status calls
refer to the buffer of the current channel.

The number of buffers and the supported buffer modes are device-dependent and
described in the respective device driver user manual.

Table B2. Block I/O Modes

M_BUF_USRCTRL mode allows direct I/O to the device, i.e. you can bypass the I/
O buffers.

Note: In all other buffer modes, driver-internal buffers are used for I/O. The block I/
O functions copy data from the driver’s buffer into the application’s buffer or
vice versa.

Block I/O Mode Description Buffer Location Blocked

M_BUF_USRCTRL User-controlled buffer1

1 Default mode

Application No

M_BUF_CURRBUF MDIS-controlled current
buffer

Driver No

M_BUF_RINGBUF MDIS-controlled ring buffer Driver Yes

M_BUF_RINGBUF_
OVERWR

MDIS-controlled ring buffer
(self-overwriting)

Driver No

MBUF Device I/O

MEN Mikro Elektronik GmbH 91
21M000-13 E2 - 2004-10-20

M_BUF_CURRBUF mode uses only the first entry of a buffer. This buffer can be
continuously overwritten and therefore always contains the currently valid, i.e. the
last, recently read/written I/O values.

In M_BUF_RINGBUF mode the input or output buffer behaves as an endless ring
buffer. Input/output is blocked, i.e. if the requested block is not available a sleep/
wake-up mechanism takes effect.

M_BUF_RINGBUF_OVERWR mode is similar to the ring buffer; but if the buffer
is full, the oldest entries will be overwritten.

Changing the block I/O mode will always reset the buffers.

B 1.3.2.1 User Control Mode

In User Control Mode, the MDIS-controlled buffers are not used. The buffer is
provided by the application and reading/writing to/from the device is directly done
into these user buffer.

• Use M_getblock() to read directly from the device into the application buffer.

• Use M_setblock() to write from the application buffer directly to the device.

The structure of the buffer is device-dependent and is described in the respective
device driver user manual.

B 1.3.2.2 Current Buffer Mode

In Current Buffer Mode, MDIS allocates and manages the buffer. The buffer is
provided by the driver and reading/writing to/from the device is done
asynchronously via the buffer.

The Current Buffer is a self-overwriting buffer providing space for one buffer
entry. The remaining buffer space is not used in this mode:

• An input buffer is filled with data by the driver’s interrupt service. This process
is interrupt-triggered. Asynchronously the application can read data from the
buffer using M_getblock(). The buffer is not blocked, i.e. if there is no (new) data
in the buffer, the getblock call doesn’t wait, but returns with the old data.

• An output buffer is filled with data using M_setblock(). Asynchronously the
data is written to the device by the driver’s interrupt service. This process is
interrupt-triggered. The buffer is not blocked, i.e. if the last written value has not
been written to the device, the setblock call doesn’t wait, but overwrites the old
data.

MBUF Device I/O

MEN Mikro Elektronik GmbH 92
21M000-13 E2 - 2004-10-20

Figure B2. Current Input Buffer

Figure B3. Current Output Buffer

The buffer counter is zero after initialization or after reset of the buffer. As soon as
the first value is written to the buffer the buffer counter switches to ’1’ and remains
at this value until the buffer is reset.

B 1.3.2.3 Ring Buffer Mode

In Ring Buffer Mode, MDIS allocates and manages the buffer. The buffer is
provided by the driver and reading/writing to/from the device is done
asynchronously via the buffer.

The Ring Buffer is a blocking, quasi-endless buffer providing space for several
buffer entries:

• An input buffer is filled with data by the driver’s interrupt service. This process
is interrupt-triggered. Asynchronously the application can read data from it using
M_getblock(). The buffer is blocked, i.e. if there is no more data in the buffer, the
getblock call is put to sleep until the requested data is available or a timeout has
occurred.

• An output buffer is filled with data using M_setblock(). Asynchronously the
data is written to the device by the driver’s interrupt service. This process is
interrupt-triggered. The buffer is blocked, i.e. if there is no more space in the
buffer for new data, the setblock call is put to sleep until the required space is
available or a timeout has occurred.

Device
Input Buffer

Interrupt ServiceM_getblock

(unused)

Application Buffer

Device
Output Buffer

Interrupt ServiceM_setblock

(unused)

Application Buffer

MBUF Device I/O

MEN Mikro Elektronik GmbH 93
21M000-13 E2 - 2004-10-20

Figure B4. Ring Input Buffer

Figure B5. Ring Output Buffer

The buffer counter is zero after initialization or after reset of the buffer. Each time
data is written to the buffer the counter is incremented. Each time data is read from
the buffer, the counter is decremented.

Buffer overflow and underrun conditions cause errors if error handling was
enabled via the M_BUF_RD/WR_ERR SetStat calls. By default, error handling is
disabled:

• If the driver’s interrupt service cannot write new data to an input buffer because
the buffer is full, a buffer overflow has occurred. In this case this data is lost and
the overflow error counter is incremented. If overflow error handling is enabled,
the next or currently executed getblock call returns an
ERR_MBUF_OVERFLOW error. The overflow error counter can be queried
using the M_BUF_RD_ERR_COUNT GetStat call. It can be reset to zero via the
appropriate SetStat call.

Device

Input Buffer

Interrupt Service

M_getblock

Application Buffer

fil
lin

g

Device

Output Buffer

Interrupt Service

M_setblock

Application Buffer

fil
lin

g

MBUF Device I/O

MEN Mikro Elektronik GmbH 94
21M000-13 E2 - 2004-10-20

• If the drivers interrupt service cannot read new data from the output buffer
because the buffer is empty, a buffer underrun has occurred. In this case no data
is written to the device and the underrun error counter is incremented. If under-
run error handling is enabled, the next or currently executed setblock call returns
an ERR_MBUF_UNDERRUN error. The underrun error counter can be queried
using the M_BUF_WR_ERR_COUNT GetStat call. It can be reset to zero via the
appropriate SetStat call.

It is possible to read or write blocks exceeding the size of the input or output buffer.
This applies to both M_getblock() and M_setblock(). In this case the application
process is put to sleep several times within the function and the application buffer is
filled with the requested data one part at a time.

You can limit the maximum time during which a process may stay asleep by
defining a timeout period in the device descriptor or via the M_BUF_RD/
WR_TIMEOUT SetStat calls.

If this time is exceeded the process returns from the sleeping state with an
ERR_OSS_TIMEOUT error. Setting the timeout period to zero disables the timeout.

B 1.3.2.4 Ring Buffer Mode (Self-Overwriting)

The Self-Overwriting Ring Buffer Mode is identical with the normal Ring Buffer
Mode, with the exception that this buffer is never blocked on "full" or "empty"
conditions.

MDIS allocates and manages the buffer. The buffer is provided by the driver and
reading/writing to/from the device is done asynchronously via the buffer.

The Self-Overwriting Ring Buffer is a non-blocking, quasi-endless buffer
providing space for several buffer entries:

• An input buffer is filled with data by the driver’s interrupt service. This process
is interrupt-triggered. Asynchronously the application can read data from it using
M_getblock(). The buffer is not blocked, i.e. if there is no more new data in the
buffer, the getblock call returns the oldest data again.

• An output buffer is filled with data using M_setblock(). Asynchronously the
data is written to the device by the driver’s interrupt service. This process is
interrupt-triggered. The buffer is not blocked, i.e. if there is no more space in the
buffer for new data, the setblock call overwrites old data that has currently not
been written to the device. This data is lost.

The buffer counter is zero after initialization or after reset of the buffer. Each time
data is written to the buffer the counter is incremented until the buffer is full. Each
time data is read from the buffer, the counter is decremented until the buffer is
empty.

Buffer overflow and underrun conditions never occur in this buffer mode. The buffer
timeout is not used since the getblock/setblock calls never sleep.

MBUF Device I/O

MEN Mikro Elektronik GmbH 95
21M000-13 E2 - 2004-10-20

B 1.4 Buffer Events

MDIS allows a user-definable signal to be sent to the application process when
certain buffer levels have been reached:

• The input buffer counter has reached the highwater mark when up-counting

• The output buffer counter has reached the lowwater mark when down-counting

The application can activate the highwater signal condition via the
M_BUF_RD_SIGSET_HIGH SetStat call and deactivate it using the
M_BUF_RD_SIGCLR_HIGH SetStat call:

Figure B6. Signal Input Buffer

The application can activate the lowwater signal condition via the
M_BUF_WR_SIGSET_LOW SetStat call and deactivate it using the
M_BUF_WR_SIGCLR_LOW SetStat call:

size - 1

highwater

2

1

0

M_getblock
reading from

buffer

Interrupt
Service
filling buffer

send signal

Input Buffer Counter

MBUF Device I/O

MEN Mikro Elektronik GmbH 96
21M000-13 E2 - 2004-10-20

Figure B7. Signal Output Buffer

If the signal condition is already true when being activated, the signal is sent
immediately. An activated signal condition can only be deactivated by the process
that activated it.

size - 1

lowwater

1

0

M_setblock
filling buffer

Interrupt Service
writing from
buffer

send signal

Output Buffer Counter

Status Codes

MEN Mikro Elektronik GmbH 97
21M000-13 E2 - 2004-10-20

B 2 Status Codes

Driver parameters can be changed or queried using the M_setstat() or M_getstat()
functions, passing the appropriate status code. Each device driver supports a set of
common status codes and optionally a set of device-specific status codes.

The common codes are for all standard parameteters supported by most device
drivers, whereas the device-specific codes are for handling special parameters of the
device’s hardware. All device-specific codes supported by a driver are described in
detail in the respective device driver user manual.

B 2.1 Status Code Types

You can make status calls using the M_setstat() or M_getstat() functions with two
types of status codes:

• Standard status codes

• Block status codes

With standard status codes the passed value is always a 32-bit value.

With block status codes the passed value is always a pointer to structure
M_SG_BLOCK, containing the application buffer’s pointer and size.

Structure M_SG_BLOCK

You must prepare this structure before calling the GetStat/SetStat function, and the
pointer to this structure is passed to function parameter value.

See also the example programs of the M_setstat() / M_getstat() calls.

Note: As a name convention all block status codes are named
<PREFIX>_BLK_xxxx.

typedef struct {
int32 size; /* application buffer size */
void *data; /* application buffer location */

} M_SG_BLOCK;

Status Codes

MEN Mikro Elektronik GmbH 98
21M000-13 E2 - 2004-10-20

B 2.2 Common Status Codes

The following chapters describe all standard status codes. The table fields have the
following meanings:

Figure B8. Example of Status Code Table

All definitions and typedefs (except max) are defined in the mdis_api.h include file.

B 2.2.1 MDIS Kernel Status Codes

Some of the following codes are optional. They are not supported by all MDIS
implementations. Optional codes are shown with a grey background .

Table B3. MDIS Kernel Status Codes

Status Code G/S Type Description Value Range

M_MK_CH_CURRENT G,S STD Current channel 0..max

Status code definition

Status calls that are allowed
for this status code:

G = GetStat
S = SetStat

Status code type:

STD = standard
BLK = block

Short description Valid values passed
to/by the status call,
max = 0xFFFFFFFF

Status Code G/S Type Description Value Range

M_MK_CH_CURRENT G,S STD Current channel 0..max

M_MK_CH_CURRENT_OLD G,S STD Current channel (MDIS 3.x com-
patible)

1..max

M_MK_IO_MODE G,S STD Channel I/O mode M_IO_EXEC,
M_IO_EXEC_INC

M_MK_IRQ_ENABLE G,S STD Device interrupt enable 0 = disable, 1 = enable

M_MK_IRQ_COUNT G,S STD Global interrupt counter 0..max

M_MK_IRQ_INFO G STD Board interrupt capabilities BBIS_IRQ_DEVIRQ,
BBIS_IRQ_EXPIRQ

M_MK_IRQ_MODE G STD Board interrupt mode flag(s) BBIS_IRQ_NONE,
BBIS_IRQ_EXCEPTION,
BBIS_IRQ_EXCLUSIVE,
BBIS_IRQ_SHARED

M_MK_IRQ_INSTALLED G STD Interrupt service installed 0..1

M_MK_TICKRATE G STD System tick rate [tics/s]

M_MK_NBR_ADDR_SPACE G STD Number of device address spaces 0..max

M_MK_BLK_PHYSADDR G BLK Physical address and size (of given
space)

See below

M_MK_BLK_VIRTADDR G BLK Virtual address and size (of given
space)

See below

M_MK_BLK_BB_HANDLER G BLK Board handler name See below

M_MK_BLK_BRD_NAME G BLK Board name See below

M_MK_BLK_LL_HANDLER G BLK Device driver name See below

Status Codes

MEN Mikro Elektronik GmbH 99
21M000-13 E2 - 2004-10-20

M_MK_CH_CURRENT sets and queries the current channel. Channel numbers
start with 0. M_MK_CH_CURRENT_OLD exists only for compatibility with MDIS
V3.x, where channel numbers start with 1.

M_MK_IO_MODE sets and queries the I/O mode for the read/write calls.

M_MK_IRQ_ENABLE enables or disables the device interrupt at runtime.

M_MK_IRQ_COUNT reads (G) or clears (S) the global interrupt counter.

M_MK_IRQ_INFO queries the board's interrupt capabilities. The returned flag(s)
show if the board supports a device interrupt (BBIS_IRQ_DEVIRQ) and/or a board
exception interrupt (BBIS_IRQ_EXPIRQ). See board's interrupt definitions in
bb_defs.h.

M_MK_IRQ_MODE queries the board's interrupt mode. The returned flag(s) show,
if the device interrupt is exclusive for the device slot (BBIS_IRQ_EXCLUSIVE), or
if it is shared with device interrupts of other board slots (BBIS_IRQ_SHARED).
Also, it shows if the device interrupt is shared with a board exception interrupt. See
board's interrupt definitions in bb_defs.h.

M_MK_IRQ_INSTALLED shows if the interrupt service routine for the device is
installed (1) or not (0).

M_MK_TICKRATE returns system’s ticker rate in ticks per second.

M_MK_BLK_DEV_NAME G BLK Device name See below

M_MK_BLK_HW_NAME G BLK Hardware name

M_MK_BLK_REV_ID G BLK Software revision ID string See below

M_MK_REV_SIZE G STD Software revision ID string size
[bytes]

See below

M_MK_DEBUG_LEVEL G,S STD Debug level of MDIS kernel See dbg.h

M_MK_API_DEBUG_LEVEL G,S STD Debug level of MDIS API See dbg.h

M_MK_OSS_DEBUG_LEVEL G,S STD Debug level of operating system
services

See dbg.h

M_MK_LOCKMODE G STD Process lock mode LL_LOCK_NONE,
LL_LOCK_CALL,
LL_LOCK_CHAN

M_MK_PATHCNT G STD Opened paths on device 1..max

M_MK_DEV_SLOT G STD Device slot of board 0..max

M_MK_DEV_ADDRMODE G STD Device addr mode flag(s) MDIS_MA08,
MDIS_MA24

M_MK_DEV_DATAMODE G STD Device data mode flag(s) MDIS_MD08,
MDIS_MD16,
MDIS_MD32

M_MK_BUSTYPE G STD Board bus system OSS_BUSTYPE_NONE,
OSS_BUSTYPE_VME,
OSS_BUSTYPE_PCI,
OSS_BUSTYPE_ISA

Status Code G/S Type Description Value Range

Status Codes

MEN Mikro Elektronik GmbH 100
21M000-13 E2 - 2004-10-20

M_MK_NBR_ADDR_SPACE returns the number of address spaces required by the
device. For all of the returned address spaces, subsequent calls of the
M_MK_BLK_PHYS/VIRTADDR GetStats are possible.

M_MK_BLK_PHYSADDR queries the physical address and requested size of a
given address space (index). The structure M_ADDRSPACE is passed via parameter
data of the M_SG_BLOCK structure. Before the GetStat call can be made,
parameter space of the M_ADDRSPACE structure must be set to the address space
which should be queried. After the GetStat call the addr and size parameters of the
M_ADDRSPACE structure are initialized with the resulting values:

Note: All parameters of the M_ADDRSPACE structure represent the target system’s
native integer format, being declared as native_int.

M_MK_BLK_VIRTADDR queries the virtual address and available (mapped) size
of a given address space (index) in the same way as M_MK_BLK_PHYSADDR (see
above). For systems without virtual address management, the code will return the
same values as M_MK_BLK_PHYSADDR.

Getstats M_MK_BLK_BB_HANDLER, M_MK_BLK_BRD_NAME,
M_MK_BLK_LL_HANDLER, M_MK_BLK_DEV_NAME and
M_MK_BLK_HW_NAME can be used to query the name of boards/devices and the
corresponding board handler/drivers. A character array of size M_MAX_NAME is
passed via parameter data of the M_SG_BLOCK structure. After the GetStat call the
array contains a zero-terminated name string:

M_MK_BLK_REV_ID queries the revision ID strings of all driver modules which
are used by the driver. A character array is passed via parameter data of the
M_SG_BLOCK structure. After the GetStat call the array contains multiple lines
terminated with the system’s native carriage return character. The last line is zero-
terminated. The required size of the character array can be queried by the
M_MK_REV_SIZE GetStat call.

The resulting lines consist of the driver module’s name and description and the ID
string of the revision control system in the following format:

M_MK_DEBUG_LEVEL, M_MK_API_DEBUG_LEVEL and
M_MK_OSS_DEBUG_LEVEL define the debug level of a debug driver. This
influences the number of debug messages which are produced. See debug level
definitions in dbh.h and Chapter B 4.5 Driver Debugging on page 124.

M_MK_LOCKMODE queries the process lock mode (none, call or channel
locking) of the driver. See lock mode definitions in ll_defs.h.

M_MK_PATHCNT queries how many processes have an opened path to a device.

M_MK_DEV_SLOT queries which slot on the board is used by the device.

typedef struct {
native_int space; /* in: address space (index) */
native_int addr; /* out: start address of address space */
native_int size; /* out: size of address space [bytes] */

} M_ADDRSPACE;

char namestr[M_MAX_NAME];

<mod_name> - <mod_description>: <rcs_id>

Status Codes

MEN Mikro Elektronik GmbH 101
21M000-13 E2 - 2004-10-20

M_MK_DEV_ADDRMODE and M_MK_DEV_DATAMODE query the hardware
characteristics of the device. The returned flag(s) show which address and data
modes are supported from the device. For local devices (directly connected to the
CPU), no flags are returned. See address/data mode definitions in mdis_com.h.

M_MK_BUSTYPE queries the board's bus system type: OSS_BUSTYPE_NONE
specifies a local device (directly connected to the CPU), OSS_BUSTYPE_VME
specifies VMEbus and OSS_BUSTYPE_ISA PC ISA bus. See bus system definitions
in oss.h.

B 2.2.2 Input Buffer Management Status Codes

If more than one input buffer is supported by the driver, the following status calls
refer to the input buffer of the current channel.

Table B4. Input Buffer Management Status Codes

M_BUF_RD_MODE sets and queries the input buffer block I/O mode.

M_BUF_RD_ERR enables/disables the input buffer overflow error handling.

M_BUF_RD_SIGSET_HIGH activates and queries the input buffer’s highwater
signal. The signal to be sent is passed to the SetStat call.

M_BUF_RD_SIGCLR_HIGH deactivates an activated highwater signal.

M_BUF_RD_HIGHWATER sets and queries the input buffer’s highwater mark.

M_BUF_RD_TIMEOUT sets and queries the input buffer’s read timeout. The
given timeout is internally rounded up to system ticks.

M_BUF_RD_BUFSIZE queries the input buffer’s total size.

Status Code G/S Type Description Value Range

M_BUF_RD_MODE G,S STD Input buffer block I/O mode M_BUF_USRCTRL,
M_BUF_CURRBUF,
M_BUF_RINGBUF,
M_BUF_RINGBUF_OVERWR

M_BUF_RD_ERR G,S STD Overflow error enable 0 = disable, 1 = enable

M_BUF_RD_SIGSET_HIGH G,S STD Highwater signal activate See below

M_BUF_RD_SIGCLR_HIGH S STD Highwater signal deactivte 0

M_BUF_RD_HIGHWATER G,S STD Highwater mark [bytes] 0..max

M_BUF_RD_TIMEOUT G,S STD Read timeout [ms] 0 = none, 1..max

M_BUF_RD_BUFSIZE G STD Input buffer size [bytes] 0..max

M_BUF_RD_WIDTH G STD Input buffer width [bytes] 0..max

M_BUF_RD_COUNT G STD Input buffer counter [bytes] 0..max

M_BUF_RD_ERR_COUNT G,S STD Overflow error counter 0..max

M_BUF_RD_RESET S STD Logically reset input buffer 0

M_BUF_RD_CLEAR S STD Physically clear input buffer 0

M_BUF_BLK_RD_DATA G BLK Read input buffer data See below

M_BUF_RD_DEBUG_LEVEL G,S STD Debug level of input buffer

Status Codes

MEN Mikro Elektronik GmbH 102
21M000-13 E2 - 2004-10-20

M_BUF_RD_WIDTH queries the minimum block size that can be read from the
input buffer.

M_BUF_RD_COUNT queries the input buffer counter, i.e. the number of available
bytes.

M_BUF_RD_ERR_COUNT reads (G) or clears (S) the input buffer error counter,
i.e. the number of buffer overflows that have occurred.

M_BUF_RD_RESET logically resets the input buffer, i.e. internal buffer pointers
and counters are reset.

M_BUF_RD_CLEAR physically clears the input buffer for debug purposes, i.e. the
entire buffer space is filled with zero.

M_BUF_BLK_RD_DATA copies the entire input buffer into a user buffer passed
via parameter data of the M_SG_BLOCK structure. The user buffer size must be
equal to the input buffers size.

M_BUF_RD_DEBUG_LEVEL defines the debug level of the input buffer
functions of a debug driver. This influences the number of debug messages which
are produced. See debug level definitions in dbh.h and Chapter B 4.5 Driver
Debugging on page 124.

B 2.2.3 Output Buffer Management Status Codes

If more than one output buffer is supported by the driver, the following status calls
refer to the output buffer of the current channel.

Table B5. Output Buffer Management Status Codes

M_BUF_WR_MODE sets and queries the output buffer block I/O mode.

M_BUF_WR_ERR enables/disables the output buffer underrun error handling.

Status Code G/S Type Description Value Range

M_BUF_WR_MODE G,S STD Output buffer block I/O mode M_BUF_USRCTRL,
M_BUF_CURRBUF,
M_BUF_RINGBUF,
M_BUF_RINGBUF_OVERWR

M_BUF_WR_ERR G,S STD Underrun error enable 0 = disable, 1 = enable

M_BUF_WR_SIGSET_LOW G,S STD Lowwater signal activate See below

M_BUF_WR_SIGCLR_LOW S STD Lowwater signal deactivte 0

M_BUF_WR_LOWWATER G,S STD Lowwater mark [bytes] 0..max

M_BUF_WR_TIMEOUT G,S STD Write timeout [ms] 0 = none, 1..max

M_BUF_WR_BUFSIZE G STD Output buffer size [bytes] 0..max

M_BUF_WR_WIDTH G STD Output buffer width [bytes] 0..max

M_BUF_WR_COUNT G STD Output buffer counter [bytes] 0..max

M_BUF_WR_ERR_COUNT G,S STD Underrun error counter 0..max

M_BUF_WR_RESET S STD Logically reset output buffer 0

M_BUF_WR_CLEAR S STD Physically clear output buffer 0

M_BUF_BLK_WR_DATA G BLK Read output buffer data See below

M_BUF_WR_DEBUG_LEVEL G,S STD Debug level of write buffer

Status Codes

MEN Mikro Elektronik GmbH 103
21M000-13 E2 - 2004-10-20

M_BUF_WR_SIGSET_LOW activates and queries the output buffers lowwater
signal. The signal to be sent is passed to the SetStat call.

M_BUF_WR_SIGCLR_LOW deactivates an activated lowwater signal.

M_BUF_WR_LOWWATER sets and queries the output buffer’s lowwater mark.

M_BUF_WR_TIMEOUT sets and queries the output buffer’s read timeout. The
given timeout is internally rounded up to system ticks.

M_BUF_WR_BUFSIZE queries the output buffer’s total size.

M_BUF_WR_WIDTH queries the minimum block size that can be written to the
output buffer.

M_BUF_WR_COUNT queries the output buffer counter, i.e. the number of free
bytes.

M_BUF_WR_ERR_COUNT reads (G) or clears (S) the output buffer error counter,
i.e. the number of buffer underruns that have occurred.

M_BUF_WR_RESET logically resets the output buffer, i.e. internal buffer pointers
and counters are reset.

M_BUF_WR_CLEAR physically clears the output buffer for debug purposes, i.e.
the entire buffer space is filled with zero.

M_BUF_BLK_WR_DATA copies the entire output buffer into a user buffer passed
via parameter data of the M_SG_BLOCK structure. The user buffer size must be
equal to the output buffer’s size.

M_BUF_WR_DEBUG_LEVEL defines the debug level of the output buffer
functions of a debug driver. This influences the number of debug messages which
are produced. See debug level definitions in dbh.h and Chapter B 4.5 Driver
Debugging on page 124.

Status Codes

MEN Mikro Elektronik GmbH 104
21M000-13 E2 - 2004-10-20

B 2.2.4 Device Driver Status Codes

Table B6. Device Driver Status Codes

M_LL_CH_NUMBER queries the total number of device channels.

M_LL_CH_DIR queries the current channel’s direction. If supported by the driver,
the channel direction can also be changed at runtime using this call.

M_LL_CH_LEN is for channel information purposes and returns the physical bit
width of the current channel.

M_LL_CH_TYP is for channel information purposes and returns the type of
hardware of the current channel.

M_LL_IRQ_COUNT reads (G) or clears (S) the device interrupt counter.

M_LL_ID_CHECK returns if the device’s ID PROM was checked at device
initialization.

M_LL_DEBUG_LEVEL allows to define the debug level for the driver’s functions
in debug drivers. See definitions in dbg.h and Chapter B 4.5 Driver Debugging on
page 124.

M_LL_BLK_ID_DATA reads the raw device ID PROM data (M_LL_ID_SIZE
bytes) from a device into a buffer passed via parameter data of the M_SG_BLOCK
structure. The ID PROM data size can be queried by the M_LL_ID_SIZE GetStat
call. If no ID PROM exists an ERR_LL_UNK_CODE error is returned.

Status Code G/S Type Description Value Range

M_LL_CH_NUMBER G STD Number of device channels 1..max

M_LL_CH_DIR G,S STD Device channel direction M_CH_IN, M_CH_OUT,
M_CH_INOUT

M_LL_CH_LEN G STD Device channel length [bits] 0..max

M_LL_CH_TYP G STD Device channel type M_CH_UNKNOWN,
M_CH_BINARY,
M_CH_ANALOG,
M_CH_SERIAL

M_LL_IRQ_COUNT G,S STD Device interrupt counter 0..max

M_LL_ID_CHECK G STD Device ID check enabled 0 = disabled,
1 = enabled

M_LL_DEBUG_LEVEL G,S STD Debug level of device driver See dbg.h

M_LL_ID_SIZE G STD Device ID PROM size [bytes] See below

M_LL_BLK_ID_DATA G BLK Read device ID PROM See below

Status Codes

MEN Mikro Elektronik GmbH 105
21M000-13 E2 - 2004-10-20

B 2.2.5 Board Handler Status Codes

Table B7. Board Handler Status Codes

M_BB_IRQ_VECT reads the installed interrupt vector. If no interrupt is installed,
zero is returned as value.

M_BB_IRQ_LEVEL queries the used interrupt level.

M_BB_IRQ_PRIORITY queries the used interrupt priority (for shared interrupts).

M_BB_IRQ_EXP_COUNT reads (G) or clears (S) the exception interrupt counter.

M_BB_ID_CHECK returns if the board ID PROM was checked at device
initialization.

M_BB_DEBUG_LEVEL allows to define the debug level for the board handler’s
functions in debug drivers. See definitions in dbg.h and Chapter B 4.5 Driver
Debugging on page 124.

M_BB_BLK_ID_DATA reads the raw board ID PROM data from a base board into
a buffer passed via parameter data of the M_SG_BLOCK structure. The ID PROM
data size can be queried by the M_BB_ID_SIZE GetStat call. If no ID PROM exists
an ERR_BB_UNK_CODE error is returned.

Status Code G/S Type Description Value Range

M_BB_IRQ_VECT G STD Device interrupt vector 0 = none, 1..max

M_BB_IRQ_LEVEL G STD Device interrupt level 0..max

M_BB_IRQ_PRIORITY G STD Device interrupt priority 0..max

M_BB_IRQ_EXP_COUNT G,S STD Exception interrupt counter 0..max

M_BB_ID_CHECK G STD Board ID check enabled 0 = disabled,
1 = enabled

M_BB_DEBUG_LEVEL G,S STD Debug level of board handler See dbg.h

M_BB_ID_SIZE G STD Board ID PROM size [bytes] See below

M_BB_BLK_ID_DATA G BLK Read board ID PROM See below

Error Codes

MEN Mikro Elektronik GmbH 106
21M000-13 E2 - 2004-10-20

B 3 Error Codes

Note: Please see mdis_err.h for error numbers. The file’s location depends on the
operating system.

B 3.1 Operating System Specific Errors

Table B8. Operating System Specific Errors

B 3.2 MDIS Kernel Errors

Table B9. MDIS Kernel Errors

Error Code Error Message Error Description

ERR_BAD_PATH bad path number The given path number is unknown to the
system’s path table.

ERR_PATH_FULL path table full The path table is full (too many open paths).

ERR_BUSERR bus error occurred An exception error occurred when the hard-
ware was accessed.

Error Code Error Message Error Description

ERR_MK general error A general error occurred.

ERR_MK_USERBUF user buffer too small The user buffer for a block status call is too
small.

ERR_MK_UNK_CODE unknown status code The status code is not known.

ERR_MK_ILL_PARAM illegal parameter General error for illegal parameters.

ERR_MK_ILL_DESC illegal descriptor type An illegal descriptor type was detected in the
device descriptor.

ERR_MK_ILL_MSIZE address space size conflict The board slot’s address space is not large
enough for the device’s requirements.

ERR_MK_NO_LLDESC device descriptor not found The device descriptor does not exist.

ERR_MK_NO_BBISDESC board descriptor not found The board descriptor does not exist.

ERR_MK_NO_LLDRV device driver not found The device driver does not exist or cannot
be linked.

ERR_MK_NO_BBISDRV board handler not found The board handler does not exist or cannot
be linked.

ERR_MK_NO_IRQ board does not support interrupts The board has no interrupt capabilities.

ERR_MK_NO_IRQ board doesn't support interrupt The device needs an interrupt, but the board
slot is not able to handle device interrupts.

ERR_MK_IRQ_INSTALL can't install interrupt The interrupt cannot be installed in the sys-
tem.

ERR_MK_IRQ_REMOVE can't remove interrupt An installed interrupt cannot be removed
from the system.

ERR_MK_IRQ_ENABLE can't enable/disable interrupt An installed interrupt cannot be enabled/dis-
abled.

ERR_MK_DESC_PARAM descriptor values out of range An illegal descriptor value was detected in
the device descriptor.

Error Codes

MEN Mikro Elektronik GmbH 107
21M000-13 E2 - 2004-10-20

B 3.3 Device Driver Errors

Table B10. Device Driver Errors

B 3.4 Board Handler Errors

Table B11. Board Handler Errors

Error Code Error Message Error Description

ERR_LL general error General error occurred.

ERR_LL_USERBUF user buffer too small The user buffer for a block status call is too
small.

ERR_LL_UNK_CODE unknown status code The status code is not known.

ERR_LL_ILL_PARAM illegal parameter General error for illegal parameters.

ERR_LL_ILL_ID wrong device id detected The device ID check has detected a non-
matching device.

ERR_LL_ILL_DIR illegal i/o direction The current channel direction does not
match any read/write call.

ERR_LL_ILL_FUNC ll-driver fct. not supported An unsupported driver function was called.

ERR_LL_DEV_BUSY device is busy Driver call refused since the device is in a
state where no i/o is possible.

ERR_LL_READ device read error General read error.

ERR_LL_WRITE device write error General write error.

ERR_LL_DESC_PARAM descriptor values out of range An illegal descriptor value was detected in
the device descriptor.

Error Code Error Message Error Description

ERR_BBIS general error General error occurred.

ERR_BBIS_USERBUF user buffer too small The user buffer for a block status call is too
small.

ERR_BBIS_UNK_CODE unknown status code The status code is not known.

ERR_BBIS_ILL_PARAM illegal parameter General error for illegal parameters.

ERR_BBIS_ILL_ID wrong board id detected The board ID check has detected a non-
matching board.

ERR_BBIS_NO_IRQ can’t determine interrupt parame-
ters

An interrupt cannot be installed on the board
since the board cannot determine interrupt
parameters.

ERR_BBIS_ILL_IRQPARAM illegal interrupt parameter The board does not support the required
interrupt parameters.

ERR_BBIS_ILL_SLOT illegal board slot The requested board slot does not exist or is
already in use.

ERR_BBIS_ILL_DATAMODE illegal address space (data mode) The requested data access mode is not
available on the board slot.

ERR_BBIS_ILL_ADDRMODE illegal address space (address
mode)

The requested address mode is not avail-
able on the board slot.

ERR_BBIS_NO_CHECKLOC can’t check board location The PCI bus backplane is not able to check
the board location.

Error Codes

MEN Mikro Elektronik GmbH 108
21M000-13 E2 - 2004-10-20

B 3.5 Descriptor Errors

Table B12. Descriptor Errors

B 3.6 ID PROM Errors

Table B13. ID PROM Errors

B 3.7 Operating System Service Errors

Table B14. Operating System Service Errors

ERR_BBIS_ILL_FUNC board handler function not sup-
ported

A not supported board handler function was
called.

ERR_BBIS_DESC_PARAM descriptor values out of range An illegal descriptor value was detected in
the board descriptor.

Error Code Error Message Error Description

Error Code Error Message Error Description

ERR_DESC general error General error occurred.

ERR_DESC_CORRUPTED descriptor data corrupted The descriptor has a wrong format.

ERR_DESC_KEY_NOTFOUND descriptor key not found The requested descriptor key is not defined
in the descriptor.

ERR_DESC_BUF_TOOSMALL descriptor buffer too small Internal error when reading descriptor.

Error Code Error Message Error Description

ERR_ID general error General error occurred.

ERR_ID_NOTFOUND id prom not found The ID PROM does not exist.

ERR_ID_CORRUPTED id prom data corrupted The ID PROM contains invalid data.

ERR_ID_ILL_PARAM id prom illegal parameter Internal error when reading ID PROM.

Error Code Error Message Error Description

ERR_OSS general error General error occurred.

ERR_OSS_ILL_PARAM illegal parameter General error for illegal parameters.

ERR_OSS_UNK_BUSTYPE unknown bus type The bus type required for a base board is
not supported.

ERR_OSS_TIMEOUT timeout occured A timeout has occurred while waiting for
data or device response.

ERR_OSS_NO_PERM no permission accessing memory There is no permission to access a given
user buffer.

ERR_OSS_NO_SYSCLOCK no system ticker available There is no systems ticker available for
timer functions.

ERR_OSS_ILL_HANDLE illegal OSS handle Internal error.

ERR_OSS_SIG_OCCURED signal occured A deadly signal has been received while
waiting for data or device response.

ERR_OSS_SIG_SEND can't send signal Internal error.

ERR_OSS_SIG_SET can't install signal A user defined signal cannot be installed.

Error Codes

MEN Mikro Elektronik GmbH 109
21M000-13 E2 - 2004-10-20

B 3.7.1 PCI System Specific Error Codes

The following codes are only returned on PCI bus systems.

Table B15. PCI System Specific Error Codes

Note: The PCI specific errors do not exist on all systems!

ERR_OSS_SIG_CLR can't remove signal A user defined signal cannot be dein-
stalled.

ERR_OSS_MEM_ALLOC can't allocate memory Not enough memory available.

ERR_OSS_MEM_FREE can't free memory Internal error.

ERR_OSS_SEM_CREATE can't create semaphore Internal error.

ERR_OSS_SEM_REMOVE can't remove semaphore Internal error.

ERR_OSS_UNK_RESOURCE unknown ressource An address space or interrupt is not
known to the system or illegal.

ERR_OSS_BUSY_RESOURCE busy ressource An address space or interrupt is already
in use.

ERR_OSS_MAP_FAILED can't map address space An address space cannot be mapped.

ERR_OSS_NO_BUSTOPHYS can’t map bus address The system supports no function for map-
ping bus to physical address.

ERR_OSS_NO_MIKRODELAY mikrodelay not available The microdelay function is not available.

ERR_OSS_ALARM_CREATE can't create alarm Internal driver error.

ERR_OSS_ALARM_REMOVE can't remove alarm Internal driver error.

ERR_OSS_ALARM_SET can't install alarm routine Internal driver error.

ERR_OSS_ALARM_CLR can't remove alarm routine Internal driver error.

ERR_OSS_CALLBACK_CREATE can't create callback Callback initialization failed.

ERR_OSS_CALLBACK_REMOVE can't remove callback Callback termination failed.

ERR_OSS_CALLBACK_SET can't install callback routine The specified callback routine cannot be
installed.

ERR_OSS_CALLBACK_CLR can't remove callback routine The specified callback routine cannot be
removed.

ERR_OSS_CALLBACK_EMPTY callback queue empty Internal driver error.

ERR_OSS_CALLBACK_OVER callback queue overflow The callback queue has overflown, call-
backs may be lost.

Error Code Error Message Error Description

Error Code Error Message Error Description

ERR_OSS_PCI general error General error occurred.

ERR_OSS_PCI_ILL_DEV illegal PCI device Problem with PCI slot mapping.

ERR_OSS_PCI_ILL_DEVNBR illegal PCI device number Problem with PCI slot mapping.

ERR_OSS_PCI_ILL_ADDRNBR illegal PCI address number Unsupported PCI address.

ERR_OSS_PCI_NO_DEVINSLOT no PCI device found in slot No PCI device was found in the specified
PCI slot.

ERR_OSS_PCI_UNK_REG unknown PCI register The board handler tried to read an
unknown PCI register.

ERR_OSS_PCI_SLOT_TO_DEV can’t map PCI slot to device Internal error.

Error Codes

MEN Mikro Elektronik GmbH 110
21M000-13 E2 - 2004-10-20

B 3.7.2 VMEbus Specific Error Codes

The following codes are only returned on VMEbus systems.

Table B16. VMEbus Specific Error Codes

Note: The VMEbus specific errors do not exist on all systems!

B 3.8 Buffer Management Errors

Table B17. Buffer Management Errors

B 3.9 PLD Loader Errors

Table B18. PLD Loader Errors

Error Code Error Message Error Description

ERR_OSS_VME general error General error occurred.

ERR_OSS_VME_ILL_SPACE illegal address space The VMEbus address space required for the
board is not available on the CPU board.

ERR_OSS_VME_ILL_SIZE illegal address space size The CPU board’s VMEbus address space is
not large enough for the board’s require-
ments.

Error Code Error Message Error Description

ERR_MBUF general error General error occurred.

ERR_MBUF_USERBUF user buffer too small The user buffer for a block I/O call is smaller
than buffer width.

ERR_MBUF_UNK_CODE unknown status code The status code is not known.

ERR_MBUF_ILL_PARAM illegal parameter General error for illegal parameters.

ERR_MBUF_OVERFLOW buffer overflow occured A block read function has been aborted after
an input buffer overflow occurred.

ERR_MBUF_UNDERRUN buffer underrun occured A block write function has been aborted after
an output buffer underrun occurred.

ERR_MBUF_NO_BUF no buffer installed There is no buffer available.

ERR_MBUF_ILL_SIZE illegal buffer size The buffer size specified in the device
descriptor is not possible.

ERR_MBUF_ILL_DIR illegal buffer direction Internal error.

Error Code Error Message Error Description

ERR_PLD general error General error occurred.

ERR_PLD_NOTFOUND no response from PLD The PLD does not respond.

ERR_PLD_INIT error initializing PLD An error has occurred in the PLD initializing
sequence.

ERR_PLD_LOAD error loading PLD An error has occurred while PLD was
loaded.

ERR_PLD_TERM error terminating PLD An error has occurred in the PLD terminat-
ing sequence.

Error Codes

MEN Mikro Elektronik GmbH 111
21M000-13 E2 - 2004-10-20

B 3.10 CPU Handler (Bus Mapper) Errors

Table B19. CPU Handler (Bus Mapper) Errors

Note: The CPU handler errors do not exist on all systems!

B 3.11 BBIS Kernel Errors

Table B20. BBIS Kernel Errors

Note: The BBIS Kernel errors do not exist on all systems!

Error Code Error Message Error Description

ERR_CBIS general error General error occurred.

ERR_CBIS_UNK_CODE unknown status code Internal error.

ERR_CBIS_ILL_PARAM illegal parameter Internal error.

ERR_CBIS_ILL_FUNC function not supported Internal error.

Error Code Error Message Error Description

ERR_BK general error General error occurred.

ERR_BK_ILL_PARAM illegal parameter General error for illegal parameters.

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 112
21M000-13 E2 - 2004-10-20

B 4 MDIS Device Descriptors

B 4.1 General

B 4.1.1 Devices and Device Descriptors

A device is a piece of hardware located on a "base board" (see below). This may be

• a controller, located on a CPU board

• a mezzanine I/O device, plugged on a carrier board, e.g. M-Module or PC•MIP.

Each device is described by a so-called device descriptor. The name of the device
descriptor is usually called device name.

The device descriptor describes all logical parameters of the device:

• Device driver name

• Board name (name of the board descriptor)

• Device location (slot of the board on which the device is mounted, or logical slot
for on-board devices)

• Device/driver specific parameters

All physical characteristics of a device are hard-coded in the (low-level) driver and
can be queried by GetStat calls:

• Required address spaces

• Info about ID PROM

• Number of channels

• Characteristics of channels

Although it may be useful to know some details about device descriptors, you nor-
mally won’t need to know such details, especially if you use the MDIS installation
wizard. We recommend to use the comfortable tools provided in the MDIS distri-
bution. If you cannot make use of such tools, this chapter gives you any informa-
tion you need.

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 113
21M000-13 E2 - 2004-10-20

B 4.1.2 Boards and Board Descriptors

A board, or base board, is a piece of hardware that controls access to a device and
the interrupts from this device. The base board can be

• the CPU board that contains or implements the controlled device

• a carrier board for mezzanine I/O devices, e.g. M-Module or PC•MIP carrier.

Each base board is described by a so-called board descriptor. The name of the
board descriptor is usually called board name. This name is defined as a string in
the device descriptor.

The board descriptor describes all logical characteristics of the board:

• Board handler name

• Board location (geographical location or physical address)

• Interrupt configuration

• Board/handler specific parameters

All physical characteristics of a base board are hard-coded in the board handler and
can be queried by GetStat calls:

• Info about ID PROM

• Number of board slots

• Available address spaces of a board slot

• Interrupt parameters of a board slot

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 114
21M000-13 E2 - 2004-10-20

B 4.2 Descriptor Format

Descriptors are generated from a text file, the so-called meta descriptor, with the
following format:

The following items are used:

Table B21. Descriptor Items

For types BINARY and U_INT32 the following notations of Value are recognized:

Comments are allowed with trailing ’#’ or ’//’. The rest of the line will be ignored
then. Long lines may be clipped using ’\’. The next line will then be interpreted as
part of this line. Opening braces must be in the same line as the object or key name.
Closing braces must be in a separate line.

The descriptor-generating process, i.e. the conversion from the text file to a target
system specific format is described in detail in the operating sytem specific chapters
of the MDIS user guide.

Note: A descriptor definition file can contain multiple descriptor objects.

Objname1 {
Key1 = DataType Value,...
Key2 = DataType Value,...
SubKey {

Key3 = DataType Value,...
}

}

Item Description Value Range

Objname Name of the following descriptor
(enclosed in {} braces)

[A..Z, 0..9, _]

Key Name of the following descriptor field [A..Z, 0..9, _]

DataType Specifies the data type of the field’s val-
ues

BINARY (byte array),
U_INT32 (single 32-bit),
STRING (zero-termi-
nated)

Value Single value or comma separated list of
values

depends on DataType

SubKey Creates a new "sub-directory", which can
contain its own keys and subkeys
(enclosed in {} braces)

[A..Z, 0..9, _]

123 ◊ Decimal notation
0x123 ◊ Hexadecimal notation
%1011 ◊ Binary notation

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 115
21M000-13 E2 - 2004-10-20

B 4.3 Device Descriptor Keys

The device descriptor defines the following parameters:

• Name of the hardware

• Name of the base board

• Geographical location on the board

• Further device-specific parameters

For these standard parameters the following descriptor keys are defined:

Table B22. Device Descriptor Keys

Legend
Req: required configuration keys, must be defined
Fix: fixed keys, should not be changed by users

See also Chapter B 4.5 Driver Debugging on page 124.

DESC_TYPE defines the type of the descriptor object. For device descriptors the
value 1 must be used.

HW_TYPE specifies the name of the device. From this name the matching device
driver name is built internally.

DEVICE_SLOT defines at which slot on the board the device is mounted. Slot
numbers begin with 0.

BOARD_NAME defines the name of the board descriptor.

ID_CHECK decides if the device ID PROM is read and checked at initialization.

IRQ_ENABLE specifies if the interrupt should implicitly be enabled during
initialization.

Key DataType Description Value Range Req Fix

DESC_TYPE U_INT32 Descriptor type
1 = device, 2 = board

1
• •

HW_TYPE STRING Hardware type (name of the device) [A..Z, 0..9, _] • •

DEVICE_SLOT U_INT32 Base board slot where device is
mounted

0..0xFFFFFFFF
•

BOARD_NAME STRING Base board name (descriptor name) [A..Z, 0..9, _] •

ID_CHECK U_INT32 Read and check the device ID
0 = disable, 1 = enable

0, 1

IRQ_ENABLE U_INT32 Enable interrupt immediately (after init)
0 = no, 1 = yes

0, 1

DEBUG_LEVEL U_INT32 Debug level of device driver see dbg.h

DEBUG_LEVEL_MK U_INT32 Debug level of MDIS kernel

DEBUG_LEVEL_DESC U_INT32 Debug level of descriptor decoder

DEBUG_LEVEL_MBUF U_INT32 Debug level of buffer manager

DEBUG_LEVEL_OSS U_INT32 Debug level of system services

SUBDEVICE_OFFSET_x U_INT32 Subdevice offset 0..0xFFFFFFFF

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 116
21M000-13 E2 - 2004-10-20

DEBUG_LEVEL_xxx enable debug output from the driver functions. This only
takes effect on debug drivers (see Chapter B 4.5 Driver Debugging on page 124).

SUBDEVICE_OFFSET_x can be used to create multiple identical sub-devices
within an MDIS device. For example, the M51 M-Module (CAN bus) has four
identical CAN controllers. You can now create MDIS devices for each CAN
controller by specifying the offsets to the controller base. On M51 the controllers
have an offset of 0x40 bytes to each other, so for the second CAN chip, one would
specify SUBDEVICE_OFFSET_x = 0x40.

Further device-specific keys are described in the respective device driver user
manual.

Example (M-Module)

B 4.3.1 Additional Descriptor Keys for PCI Devices (PC•MIP
Modules)

All PCI devices are supported by the generic PCI BBIS board driver in MDIS. The
device descriptor of a PCI device must contain additional parameters in order to
allow MDIS to check if you are accessing the right device.

Table B23. Additional PCI Device Descriptor Keys

Legend
Req: required configuration keys, must be defined
Fix: fixed keys, should not be changed by users

M31_1 {
 DESC_TYPE = U_INT32 1 # descriptor type (1=device)
 HW_TYPE = STRING M031 # hardware name of device

 BOARD_NAME = STRING A201_1 # device name of base board
 DEVICE_SLOT = U_INT32 0 # used slot on base board (0..n)

 DEBUG_LEVEL = U_INT32 0xc0008007 # LL driver debug level

 ID_CHECK = U_INT32 1 # check module ID PROM
}

Key DataType Description Value Range Req Fix

PCI_VENDOR_ID U_INT32 Vendor ID of the device in PCI con-
figuration header

0x0000..0xFFFF
•

PCI_DEVICE_ID U_INT32 Device ID of the device in PCI con-
figuration header

0x0000..0xFFFF
•

PCI_SUBSYS_VENDOR_ID U_INT32 Subsystem vendor ID in PCI config-
uration header

0x0000..0xFFFF

PCI_SUBSYS_ID U_INT32 Subsystem ID in PCI configuration
header

0x0000..0xFFFF

PCI_FUNCTION U_INT32 PCI function number to use on
device

0..7

PCI_BASEREG_ASSIGN_x U_INT32 Mapping between low-level driver’s
address spaces and PCI base
address registers

0..5

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 117
21M000-13 E2 - 2004-10-20

PCI_VENDOR_ID and PCI_DEVICE_ID must match the values in the device’s
PCI configuration header.

PCI_SUBSYS_VENDOR_ID and PCI_SUBSYS_ID - if specified - must match the
corresponding fields in the device’s PCI configuration header.

PCI_FUNCTION defines the PCI function number to use within the devices. A PCI
device can have up to 7 subfunctions. If this key is not present, the first function
(number 0) is used.

PCI_BASEREG_ASSIGN_x: A low-level driver may request multiple address
spaces from the MDIS kernel. This key defines the mapping between the low-level
driver’s address spaces and the PCI base address register 0..5. For example to use
the PCI base address register #3 for the low-level driver’s first address space set
PCI_BASEREG_ASSIGN_0 = U_INT32 3. See the low-level driver documentation
for further details.
If this key is not defined for the corresponding low-level driver’s address space, a
1:1 mapping is used (i.e. PCI base address register #0 is used for the low-level
driver’s first address space).

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 118
21M000-13 E2 - 2004-10-20

B 4.4 Board Descriptor Keys

The board descriptor defines the following parameters:

• Name of the hardware
• Address or location on the bus system
• Further board-specific parameters
• Further bus-specific parameters

For these standard parameters the following descriptor keys are defined:

Table B24. Board Descriptor Keys

Legend
Req: required configuration keys, must be defined
Fix: fixed keys, should not be changed by users

See also Chapter B 4.5 Driver Debugging on page 124.

DESC_TYPE defines the type of the descriptor object. For board descriptors the
value 2 must be used.

HW_TYPE specifies the name of the base board. From this name the matching
board handler name is built internally.

DEBUG_LEVEL enables debug output from the board handler functions. This only
takes effect on debug board handlers (see Chapter B 4.5 Driver Debugging on page
124).

Key DataType Description Value Range Req Fix

DESC_TYPE U_INT32 Descriptor type
1 = device, 2 = board

2
• •

HW_TYPE STRING Hardware type (name of the board) [A..Z, 0..9, _] • •

DEBUG_LEVEL U_INT32 Debug level for the board handler func-
tions

0..0xFFFFFFFF

DEBUG_LEVEL_BK U_INT32 Debug level of BBIS kernel

DEBUG_LEVEL_DESC U_INT32 Debug level of descriptor decoder

DEBUG_LEVEL_OSS U_INT32 Debug level of system services

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 119
21M000-13 E2 - 2004-10-20

B 4.4.1 VMEbus M-Module Carrier Boards

The following additional descriptor keys are defined for VMEbus carrier boards
such as the MEN A201S, B201S, B202S:

Table B25. Special Keys for VMEbus M-Module Carrier Boards

Legend
Req: required configuration keys, must be defined
Fix: fixed keys, should not be changed by users

VME_Axx_ADDR defines the relative bus address(es) of the board in the specified
A16, A24 VMEbus address space. The defined address must be equal to the
configured address on the base board, i.e. the DIL or hex switches on the hardware.
For the A201S, B201S and B202S boards, you must define either VME_A16_ADDR
or VME_A24_ADDR, or PHYS_ADDR.

PHYS_ADDR is an optional key for addressing. When this key is defined instead of
a VME_Axx_ADDR key, the board handler does not use the CPU board specific bus-
to-physical-address function for mapping the given address into the CPU’s address
space. Instead the defined physical address is used as it is. This key must be used for
systems where no such mapping functions exist. If this is the case, an
ERR_OSS_NO_PHYSTOBUS error is returned at board initialization. The address
defines the physical base address of the base board in the CPU’s VMEbus address
space.

VME_DATA_WIDTH key defines the VMEbus data access type and must not
exceed the VME backplane’s capabilities. It must be ’1’ (D16) for A201S, B201S
and B202S.

IRQ_VECTOR defines an array of interrupt vectors to be used for each slot. It is
recommended that you use an exclusive interrupt for each slot. Please check your
system configuration to see which vectors are already occupied by other drivers.

IRQ_LEVEL defines the interrupt level on the VMEbus on which the board
interrupts for each slot. The VMEbus has seven interrupt lines, IRQ level 7 has the
highest priority, level 1 the lowest. Do not use level 7, because this is a non-
maskable interrupt. Also check that your CPU board is able to receive an interrupt
on the selected level. For example, MEN A8/A9/A10 boards only allow to receive
VME interrupt levels 2, 3 and 5. Depending on your operating system you must also
enable the corresponding level in the CPU’s setup.

Key DataType Description Value Range Req Fix

VME_A16_ADDR U_INT32 Board base address in VME
short (A16) space

0x0000..0xFFFF
(•)

VME_A24_ADDR U_INT32 Board base address in VME
standard (A24) space

0x000000..0xFFFFFF
(•)

PHYS_ADDR U_INT32 Physical board address as seen
from the CPU (optional), over-
rides VME_Axx_ADDR

0x00000000..0xFFFFFFFF
(•)

VME_DATA_WIDTH U_INT32 1 = D16, 3 = D32 1 or 3 •

IRQ_VECTOR BINARY IRQ vector for each slot 0 = none, 1..255 •

IRQ_LEVEL BINARY IRQ level for each slot 1..6 •

IRQ_PRIORITY BINARY IRQ priority system-dependent

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 120
21M000-13 E2 - 2004-10-20

IRQ_PRIORITY is only used for shared interrupts. Some systems (OS-9) maintain
a linked list of handlers in a priority-based manner. However, since VME interrupt
sharing is not recommended, this key is not required.

B 4.4.2 CompactPCI M-Module Carrier Boards

The following describes how to configure the D201, F201 and F202 CompactPCI
M-Module carrier boards.

First you must tell MDIS the PCI bus number of the CompactPCI backplane. Since
this depends on the CPU and may even vary depending on the system configuration,
it is recommended to configure a PCI_BUS_PATH in the descriptor. The PCI bus
path allows to address an exact geographical location within a PCI system,
indepedently of which PCI devices are present in the system. PCI_BUS_PATH is an
array of device IDs of PCI-to-PCI bridges starting from PCI bus 0.

For example, to address the Compact PCI backplane on a MEN D2 CPU, you must
enter PCI_BUS_PATH = BINARY 0x08, because the CompactPCI bridge has device
ID 0x08 on PCI bus 0. See D201/DOC/pcibuspath.txt for a list of currently known
bus paths.

If you don’t know the device IDs of your system’s bridges, you can alternatively
enter the PCI bus number of the CompactPCI backplane directly using
PCI_BUS_NUMBER.

Note: With VxWorks you can use the pciscanner tool to find out the PCI bus path
(sysPciScan()).

Table B26. Special Keys for CompactPCI M-Module Carrier Boards - PCI Bus Keys

Legend
Req: required configuration keys, must be defined
Fix: fixed keys, should not be changed by users

Additionally, you must tell MDIS the CompactPCI slot in which your carrier board
is plugged. Again you have two alternatives:

If you have a standard CompactPCI backplane you should use PCI_BUS_SLOT.
This is the geographical slot number within the CompactPCI rack (slot 1 = system
slot). MDIS will compute the PCI device number from this value. Some
CompactPCI racks support encoding on each slot connector (signals GA[0..4]) that
allows a board to check its geographical location. You can advice your board driver
to check if PCI_BUS_SLOT and the actual geographical location match using
descriptor key PCI_CHECK_LOCATION.

Alternatively you can specify the PCI device number on the CompactPCI bus
directly using PCI_DEVICE_ID (note that this key exists also in the device
descriptor of PCI devices but has a different meaning there).

Key DataType Description Value Range Req Fix

PCI_BUS_PATH BINARY Device IDs of bridges to CompactPCI
backplane (see text)

0x00..0x1F,
(•)

PCI_BUS_NUMBER U_INT32 Alternative to PCI_BUS_PATH. Specify
PCI bus number directly.

0x00..0xFF
(•)

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 121
21M000-13 E2 - 2004-10-20

Table B27. Special Keys for CompactPCI M-Module Carrier Boards - PCI Device Keys

Legend
Req: required configuration keys, must be defined
Fix: fixed keys, should not be changed by users

B 4.4.3 Standard PCI M-Module Carrier Boards

The M-Module carrier boards for standard PCI bus, C203 and C204, are handled by
a variant of the D201 board driver. As opposed to CompactPCI, the PCI bus in
desktop PCs usually has always PCI bus number 0, so you do not need to specify a
PCI_BUS_PATH. On the other hand the PCI slots have no standard numbering of
device IDs. So you need to find out the device number of the C203/C204 board
using a PCI viewer utility and enter this value in PCI_DEVICE_ID.

Table B28. Special Keys for Standard PCI M-Module Carrier Boards

Legend
Req: required configuration keys, must be defined
Fix: fixed keys, should not be changed by users

Key DataType Description Value Range Req Fix

PCI_BUS_SLOT U_INT32 CompactPCI bus slot (1 = system slot) 2..n (•)

PCI_DEVICE_ID U_INT32 PCI device number of board on Com-
pactPCI bus, overrides
PCI_BUS_SLOT

0x00..0x1F
(•)

PCI_CHECK_LOCATION U_INT32 0 = don’t check location
1 = check location

If key not present, defaults to 1!

0,1

Key DataType Description Value Range Req Fix

PCI_BUS_NUMBER U_INT32 Specify PCI bus number (always 0 in
desktop PCs)

0
•

PCI_DEVICE_ID U_INT32 PCI device number of board on PCI
bus 0

0x00..0x1F
•

PCI_CHECK_LOCATION U_INT32 Must be 0, since GA[0..4] not avail-
able on standard PCI bus

0
•

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 122
21M000-13 E2 - 2004-10-20

B 4.4.4 PC•MIP Carrier Boards

For PC•MIP modules, the F203 and D202 boards are available for CompactPCI
systems. Additionally PC•MIP modules can reside directly on the on-board PC•MIP
slots of the MEN CPUs D2, F1, F2 and A11.

All of these boards are handled by the generic PCI board handler. Again, a
PCI_BUS_PATH key should be present in the descriptor to allow an exact
geographical addressing of a specific PC•MIP module (see also Chapter B 4.4.2
CompactPCI M-Module Carrier Boards on page 120). As opposed to the M-Module
carriers, you must include the device number of the CompactPCI backplane in the
PCI_BUS_PATH. For example, to address a D202 carrier board in CompactPCI slot
#3 of a D2 system, enter PCI_BUS_PATH = BINARY 0x08,0x0e, because the
CompactPCI bridge on the D2 has device ID 0x08 on PCI bus 0, and slot #3 has
device ID 0x0E on the CompactPCI bus.

A carrier board usually has multiple PC•MIP slots. The device numbers of each
PC•MIP slot must be entered in the descriptor keys DEVICE_SLOT_x.

Table B29. Special Keys for PC•MIP Carrier Boards

Legend
Req: required configuration keys, must be defined
Fix: fixed keys, should not be changed by users

The following table lists the PCI_BUS_PATHs on some CompactPCI carriers and
CPUs.

Table B30. PCI_BUS_PATH Values on MEN CompactPCI CPUs and PC•MIP Carrier Boards

The following table lists the DEVICE_SLOT_x assignments for some carrier boards:

Key DataType Description Value Range Req Fix

PCI_BUS_PATH BINARY Device IDs of bridges to carrier board 0x00..0x1F, ... (•)

PCI_BUS_NUMBER U_INT32 Optionally overrides PCI_BUS_PATH 0x00..0xFF (•)

DEVICE_SLOT_x U_INT32 Specify the PCI device number of PC•MIP
slot n on the carrier board

0x00..0x1F
•

CPU/Carrier
Board (Slot 1)

PCI_BUS_PATH Values for PC•MIP Carrier Board in Compact PCI Slot

2 3 4 5 6 7

D1 0x14,0x0F 0x14,0x0E 0x14,0x0D 0x14,0x0C 0x14,0x0B 0x14,0x0A

D2 0x08,0x0F 0x08,0x0E 0x08,0x0D 0x08,0x0C 0x08,0x0B 0x08,0x0A

F1, D3 0x1E,0x0F 0x1E,0x0E 0x1E,0x0D 0x1E,0x0C 0x1E,0x0B 0x1E,0x0A

F2 0x08,0x0F 0x08,0x0E 0x08,0x0D 0x08,0x0C 0x08,0x0B 0x08,0x0A

F3 0x1F 0x1E 0x1D 0x1C 0x1B 0x1A

F7 0x1E,0x06,
0x0F

0x1E,0x06,
0x0E

0x1E,0x06,
0x0D

0x1E,0x06,
0x0C

0x1E,0x06,
0x0B

0x1E,0x06,
0x0A

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 123
21M000-13 E2 - 2004-10-20

Table B31. DEVICE_SLOT_x for PC•MIP Slots on MEN PC•MIP Carrier Boards

Note: The labels of slot A and B are swapped on Rev. 00 of the F203, compared to
later revisions.

Example of a D202 Base Board Descriptor

The D202 resides in Compact PCI slot #3 of a D2 system.

CPU/Carrier Board
DEVICE_SLOT_x for PC•MIP Slot

0 (A) 1 (B) 2 (C) 3 (D) 4 (E) 5 (F)

A11 0x00 0x01

D2 0x0C 0x0B - - 0x0E

D202 0x0C 0x0D 0x0E 0x0F 0x0A 0x0B

F1, B11 0x1A 0x1D

F2 0x0D

F203 Note 1) 0x0F 0x0E 0x0D

A12a, D3a, SC13a 0x00 0x01 0x02

A12c, D3c, SC13c
(PMC slots)

0x03 0x04

D202_1 {

 DESC_TYPE = U_INT32 2 # descriptor type (2=board)
 HW_TYPE = STRING PCI # hardware name of device

 PCI_BUS_PATH = BINARY 0x08,0x0e
 DEVICE_SLOT_0 = U_INT32 0x0C
 DEVICE_SLOT_1 = U_INT32 0x0D
 DEVICE_SLOT_2 = U_INT32 0x0E
 DEVICE_SLOT_3 = U_INT32 0x0F
 DEVICE_SLOT_4 = U_INT32 0x0A
 DEVICE_SLOT_5 = U_INT32 0x0B
}

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 124
21M000-13 E2 - 2004-10-20

B 4.5 Driver Debugging

All MDIS driver modules (Kernel, low-level driver, board handler etc.) can be
compiled as debug drivers for problem fixing purposes.

The debug messages produced by a debug driver can be scaled via descriptor entries
or via SetStat calls at runtime by defining a "debug level" for a specific module or
functionality:

Note: Refer to the operating system specific part of the MDIS User Guide for
details about viewing the debug messages.

B 4.5.1 Debug Level

The debug level is a 32-bit word containing several flags:

INTR enable Enables debug output within interrupt service routine

NORM enable Enables debug output for all other (non-interrupt) routines

ERROR enable Enables debug output for error messages and warnings

LEV1 enable Enables debug output level 1 (function names)

LEV2 enable Enables debug output level 2 (additional infos)

LEV3 enable Enables debug output level 2 (verbose)

Examples

• 0xC0008000 Only error messages and warnings

• 0xC0008001 Only function names

• 0xC0008002 Only additional infos

• 0xC0008007 All messages

(See also defintions in dbg.h.)

31 30 29..16 15 14..3 2 1 0

INTR
enable

NORM
enable

-
ERROR
enable

-
LEV3
enable

LEV2
enable

LEV1
enable

MDIS Device Descriptors

MEN Mikro Elektronik GmbH 125
21M000-13 E2 - 2004-10-20

B 4.5.2 Debug Settings

The debug level can be defined for the following modules and functionality:

Table B32. Debug Level Definitions

Legend
D = device descriptor
B = board descriptor

Function(s) Descriptor Key Status Call Recommended

MDIS API Calls - M_MK_API_DEBUG_LEVEL 0x00000000

MDIS Kernel DEBUG_LEVEL_MK (D) M_MK_DEBUG_LEVEL 0xC0008000

Device Driver DEBUG_LEVEL (D) M_LL_DEBUG_LEVEL 0xC0008007

BBIS Kernel DEBUG_LEVEL_BK (B) M_MK_BK_DEBUG_LEVEL 0xC0008000

Board Handler DEBUG_LEVEL (B) M_BB_DEBUG_LEVEL 0xC0008000

Descriptor Decoder Calls DEBUG_LEVEL_DESC - 0x80008002

System Calls DEBUG_LEVEL_OSS M_MK_OSS_DEBUG_LEVEL 0xC0008002

Buffer Manager Calls (In) DEBUG_LEVEL_MBUF M_BUF_RD_DEBUG_LEVEL 0xC0008000

Buffer Manager Calls (Out) DEBUG_LEVEL_MBUF M_BUF_WR_DEBUG_LEVEL 0xC0008000

	About this Document
	Contents
	Part A MDIS4 under Windows
	A 1 General
	A 1.1 Name Conventions
	A 1.2 Supported Windows Versions
	A 1.3 Introduction to MDIS
	A 1.4 Available Packages
	A 1.5 How MDIS4 Maps into the Windows NT Architecture

	A 2 Contents of the Package
	A 3 Installing MDIS4 on the Host System
	A 3.1 Installing the System Package
	A 3.2 Installing a Driver Package
	A 3.2.1 Hints on Updating and Deinstalling

	A 4 Installing the Target System
	A 4.1 VMEbus Systems and Swapping Drivers
	A 4.2 Choosing the Right Windows Driver Type
	A 4.3 Installing Windows NT 4.0 Drivers
	A 4.4 Installing Windows 2000 PnP Drivers
	A 4.4.1 W2k Driver & PnP Basics
	A 4.4.2 Providing the Installation Files
	A 4.4.3 Installing PnP Devices
	A 4.4.4 Installing Non-PnP Devices
	A 4.4.5 Reinstalling and Updating W2k PnP Drivers
	A 4.4.6 Notes for Hardware Device Configuration Changes

	A 5 NT4 Drivers and Device Configuration
	A 5.1 Starting and Stopping NT4 Drivers
	A 5.1.1 Starting Drivers Manually
	A 5.1.2 Stopping Drivers Manually

	A 5.2 Driver Dependencies
	A 5.3 NT4 Driver Standard Parameters
	A 5.4 NT4 Driver Descriptor Files
	A 5.4.1 Generating .reg Descriptors for NT4 Drivers
	A 5.4.2 NT4 Driver-Specific MDIS Keys

	A 6 W2k Drivers & Device Configuration
	A 6.1 W2k Device Parameters
	A 6.2 MDIS4 Device Parameters

	A 7 Building MDIS4 Applications from C Sources
	A 7.1 Using NMAKE
	A 7.2 Using VC++ IDE
	A 7.2.1 Building an Application
	A 7.2.2 Cloning a Project File

	A 8 Writing Applications for MDIS
	A 8.1 Basics of MDIS API Libraries
	A 8.2 C/C++ Specifics
	A 8.2.1 Using Static MDIS API Libraries
	A 8.2.2 Using MDIS API DLLs
	A 8.2.3 Visual C++ Notes

	A 8.3 Visual Basic Specifics
	A 8.3.1 VB Declaration Files
	A 8.3.2 Multithreading
	A 8.3.3 MAPIVB - VB Example MDIS4 Application

	A 8.4 Delphi Specifics
	A 8.4.1 Delphi Import Units

	A 8.5 Measurement Studio
	A 8.5.1 General
	A 8.5.2 Customizing Your Project
	A 8.5.3 Writing Code with MDIS4

	A 8.6 MDISNT Test and Configuration Utility
	A 8.6.1 Using MDISNT

	A 9 Solving Problems
	A 9.1 Gathering Information
	A 9.1.1 Viewing Event-Log Entries
	A 9.1.2 Displaying the Used Driver Parameters (NT4)
	A 9.1.3 Displaying the Used Resources
	A 9.1.4 Getting Revision Information on MDIS Modules
	A 9.1.5 Getting .sys/.dll File Information
	A 9.1.6 Examining Dependencies of Executables
	A 9.1.7 Viewing the PCI Configuration Space
	A 9.1.8 Displaying Debug Output from Checked Modules

	A 9.2 Problems and Solutions
	A 9.2.1 NT4 Driver Does Not Start
	A 9.2.2 NT4 Driver Does Not Stop
	A 9.2.3 Device Driver Does Not Work
	A 9.2.4 Strings of Event-log Entries are Missing
	A 9.2.5 W2k Device Cannot be Opened
	A 9.2.6 Cannot Link C/C++ Application with Static MDIS API Libraries

	A 10 Performance
	A 10.1 MDIS-API Calls without Hardware Access
	A 10.1.1 NT4 Drivers on 200MHz D1 CPU
	A 10.1.2 NT4/W2k Drivers on 1.2GHz F7N CPU

	A 10.2 MDIS-API Calls with Hardware Access
	A 10.2.1 NT4 Drivers on 200MHz D1 CPU
	A 10.2.2 NT4/W2k Drivers on 1.2GHz F7N CPU

	A 11 Development Tools and Resources
	A 11.1 Development Tools
	A 11.2 Literature
	A 11.3 Resources on the Web

	Part B Common MDIS Reference
	B 1 MBUF Device I/O
	B 1.1 Channels
	B 1.2 Channel I/O
	B 1.2.1 Channel I/O Modes
	B 1.2.2 Channel Direction

	B 1.3 Block I/O
	B 1.3.1 Driver Buffers
	B 1.3.2 Block I/O Modes

	B 1.4 Buffer Events

	B 2 Status Codes
	B 2.1 Status Code Types
	B 2.2 Common Status Codes
	B 2.2.1 MDIS Kernel Status Codes
	B 2.2.2 Input Buffer Management Status Codes
	B 2.2.3 Output Buffer Management Status Codes
	B 2.2.4 Device Driver Status Codes
	B 2.2.5 Board Handler Status Codes

	B 3 Error Codes
	B 3.1 Operating System Specific Errors
	B 3.2 MDIS Kernel Errors
	B 3.3 Device Driver Errors
	B 3.4 Board Handler Errors
	B 3.5 Descriptor Errors
	B 3.6 ID PROM Errors
	B 3.7 Operating System Service Errors
	B 3.7.1 PCI System Specific Error Codes
	B 3.7.2 VMEbus Specific Error Codes

	B 3.8 Buffer Management Errors
	B 3.9 PLD Loader Errors
	B 3.10 CPU Handler (Bus Mapper) Errors
	B 3.11 BBIS Kernel Errors

	B 4 MDIS Device Descriptors
	B 4.1 General
	B 4.1.1 Devices and Device Descriptors
	B 4.1.2 Boards and Board Descriptors

	B 4.2 Descriptor Format
	B 4.3 Device Descriptor Keys
	B 4.3.1 Additional Descriptor Keys for PCI Devices (PC.MIP Modules)

	B 4.4 Board Descriptor Keys
	B 4.4.1 VMEbus M-Module Carrier Boards
	B 4.4.2 CompactPCI M-Module Carrier Boards
	B 4.4.3 Standard PCI M-Module Carrier Boards
	B 4.4.4 PC.MIP Carrier Boards

	B 4.5 Driver Debugging
	B 4.5.1 Debug Level
	B 4.5.2 Debug Settings

